Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 20(2): 196-202, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17505872

RESUMO

Previously, we developed a simple Laguerre-Gauss (LG) channelized Hotelling observer (CHO) for incorporation into our mass computer-aided detection (CAD) system. This LG-CHO was trained using initial detection suspicious region data and was empirically optimized for free parameters. For the study presented in this paper, we wish to create a more optimal mass detection observer based on a novel combination of LG channels. A large set of LG channels with differing free parameters was created. Each of these channels was applied to the suspicious regions, and an output test statistic was determined. A stepwise feature selection algorithm was used to determine which LG channels would combine best to detect masses. These channels were combined using a HO to create a single template for the mass CAD system. Results from free-response receiver operating characteristic curves demonstrated that the incorporation of the novel LG-CHO into the CAD system slightly improved performance in high-sensitivity regions.


Assuntos
Algoritmos , Diagnóstico por Computador , Mamografia , Área Sob a Curva , Inteligência Artificial , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Bases de Dados como Assunto , Técnicas de Apoio para a Decisão , Reações Falso-Positivas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Mamografia/estatística & dados numéricos , Reconhecimento Automatizado de Padrão , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador
2.
Med Phys ; 33(11): 4104-14, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17153390

RESUMO

In this article, we present a characterization of the effect of difference of Gaussians (DoG) filters in the detection of mammographic regions. DoG filters have been used previously in mammographic mass computer-aided detection (CAD) systems. As DoG filters are constructed from the subtraction of two bivariate Gaussian distributions, they require the specification of three parameters: the size of the filter template and the standard deviations of the constituent Gaussians. The influence of these three parameters in the detection of mammographic masses has not been characterized. In this work, we aim to determine how the parameters affect (1) the physical descriptors of the detected regions, (2) the true and false positive rates, and (3) the classification performance of the individual descriptors. To this end, 30 DoG filters are created from the combination of three template sizes and four values for each of the Gaussians' standard deviations. The filters are used to detect regions in a study database of 181 craniocaudal-view mammograms extracted from the Digital Database for Screening Mammography. To describe the physical characteristics of the identified regions, morphological and textural features are extracted from each of the detected regions. Differences in the mean values of the features caused by altering the DoG parameters are examined through statistical and empirical comparisons. The parameters' effects on the true and false positive rate are determined by examining the mean malignant sensitivities and false positives per image (FPpI). Finally, the effect on the classification performance is described by examining the variation in FPpI at the point where 81% of the malignant masses in the study database are detected. Overall, the findings of the study indicate that increasing the standard deviations of the Gaussians used to construct a DoG filter results in a dramatic decrease in the number of regions identified at the expense of missing a small number of malignancies. The sharp reduction in the number of identified regions allowed the identification of textural differences between large and small mammographic regions. We find that the classification performances of the features that achieve the lowest average FPpI are influenced by all three of the parameters.


Assuntos
Algoritmos , Inteligência Artificial , Mamografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Simulação por Computador , Feminino , Humanos , Modelos Biológicos , Modelos Estatísticos , Distribuição Normal , Análise Numérica Assistida por Computador , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Técnica de Subtração
3.
Med Phys ; 31(6): 1512-20, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15259655

RESUMO

In previous research, we have developed a computer-aided detection (CAD) system designed to detect masses in mammograms. The previous version of our system employed a simple but imprecise method to localize the masses. In this research, we present a more robust segmentation routine for use with mammographic masses. Our hypothesis is that by more accurately describing the morphology of the masses, we can improve the CAD system's ability to distinguish masses from other mammographic structures. To test this hypothesis, we incorporated the new segmentation routine into our CAD system and examined the change in performance. The developed iterative, linear segmentation routine is a gray level-based procedure. Using the identified regions from the previous CAD system as the initial seeds, the new segmentation algorithm refines the suspicious mass borders by making estimates of the interior and exterior pixels. These estimates are then passed to a linear discriminant, which determines the optimal threshold between the interior and exterior pixels. After applying the threshold and identifying the object's outline, two constraints on the border are applied to reduce the influence of background noise. After the border is constrained, the process repeats until a stopping criterion is reached. The segmentation routine was tested on a study database of 183 mammographic images extracted from the Digital Database for Screening Mammography. Eighty-three of the images contained 50 malignant and 50 benign masses; 100 images contained no masses. The previously developed CAD system was used to locate a set of suspicious regions of interest (ROIs) within the images. To assess the performance of the segmentation algorithm, a set of 20 features was measured from the suspicious regions before and after the application of the developed segmentation routine. Receiver operating characteristic (ROC) analysis was employed on the ROIs to examine the discriminatory capabilities of each individual feature before and after the segmentation routine. A statistically significant performance increase was found in many of the individual features, particularly those describing the mass borders. To examine how the incorporation of the segmentation routine affected the performance of the overall CAD system, free-response ROC (FROC) analysis was employed. When considering only malignant masses, the FROC performance of the system with the segmentation routine appeared better than the previous system. When detecting 90% of the malignant masses, the previous system achieved 4.9 false positives per image (FPpI) compared to the post-segmentation system's 4.2 FPpI. At 80% sensitivity, the respective FPpI were 3.5 and 1.6.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/estatística & dados numéricos , Interpretação de Imagem Radiográfica Assistida por Computador , Algoritmos , Fenômenos Biofísicos , Biofísica , Bases de Dados Factuais , Reações Falso-Positivas , Feminino , Humanos
4.
Med Phys ; 30(7): 1781-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12906196

RESUMO

We propose to investigate the use of the subregion Hotelling observer for the basis of a computer aided detection scheme for masses in mammography. A database of 1320 regions of interest (ROIs) was selected from the DDSM database collected by the University of South Florida using the Lumisys scanner cases. The breakdown of the cases was as follows: 656 normal ROIs, 307 benign ROIs, and 357 cancer ROIs. Each ROI was extracted at a size of 1024 x 1024 pixels and sub-sampled to 128 x 128 pixels. For the detection task, cancer and benign cases were considered positive and normal was considered negative. All positive cases had the lesion centered in the ROI. We chose to investigate the subregion Hotelling observer as a classifier to detect masses. The Hotelling observer incorporates information about the signal, the background, and the noise correlation for prediction of positive and negative and is the optimal detector when these are known. For our study, 225 subregion Hotelling observers were set up in a 15 x 15 grid across the center of the ROIs. Each separate observer was designed to "observe," or discriminate, an 8 x 8 pixel area of the image. A leave one out training and testing methodology was used to generate 225 "features," where each feature is the output of the individual observers. The 225 features derived from separate Hotelling observers were then narrowed down by using forward searching linear discriminants (LDs). The reduced set of features was then analyzed using an additional LD with receiver operating characteristic (ROC) analysis. The 225 Hotelling observer features were searched by the forward searching LD, which selected a subset of 37 features. This subset of 37 features was then analyzed using an additional LD, which gave a ROC area under the curve of 0.9412 +/- 0.006 and a partial area of 0.6728. Additionally, at 98% sensitivity the overall classifier had a specificity of 55.9% and a positive predictive value of 69.3%. Preliminary results suggest that using subregion Hotelling observers in combination with LDs can provide a strong backbone for a CAD scheme to help radiologists with detection. Such a system could be used in conjunction with CAD systems for false positive reduction.


Assuntos
Algoritmos , Neoplasias da Mama/classificação , Neoplasias da Mama/diagnóstico por imagem , Análise por Conglomerados , Mamografia/métodos , Reconhecimento Automatizado de Padrão , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Análise Discriminante , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Med Phys ; 30(8): 2123-30, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12945977

RESUMO

The purpose of this study was to develop a knowledge-based scheme for the detection of masses on digitized screening mammograms. The computer-assisted detection (CAD) scheme utilizes a knowledge databank of mammographic regions of interest (ROIs) with known ground truth. Each ROI in the databank serves as a template. The CAD system follows a template matching approach with mutual information as the similarity metric to determine if a query mammographic ROI depicts a true mass. Based on their information content, all similar ROIs in the databank are retrieved and rank-ordered. Then, a decision index is calculated based on the query's best matches. The decision index effectively combines the similarity indices and ground truth of the best-matched templates into a prediction regarding the presence of a mass in the query mammographic ROI. The system was developed and evaluated using a database of 1465 ROIs extracted from the Digital Database for Screening Mammography. There were 809 ROIs with confirmed masses (455 malignant and 354 benign) and 656 normal ROIs. CAD performance was assessed using a leave-one-out sampling scheme and Receiver Operating Characteristics analysis. Depending on the formulation of the decision index, CAD performance as high as A(zeta) = 0.87 +/- 0.01 was achieved. The CAD detection rate was consistent for both malignant and benign masses. In addition, the impact of certain implementation parameters on the detection accuracy and speed of the proposed CAD scheme was studied in more detail.


Assuntos
Neoplasias da Mama/diagnóstico , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Mama/patologia , Bases de Dados como Assunto , Reações Falso-Positivas , Humanos , Modelos Estatísticos , Curva ROC , Intensificação de Imagem Radiográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...