Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 305: 114331, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954688

RESUMO

The amount of compostable bioplastics collected with the food waste is constantly growing, particularly due to the bags used for collection. According to the Italian legislation, compostable bioplastics must be accepted by all biological treatment plants, including aerobic and anaerobic facilities. Anyway, the compostability standard requires only the assessment of the aerobic degradability, while it is generally not required to test the behaviour under anaerobic conditions. This aspect is evaluated in the paper, where the anaerobic degradability of bioplastic bags used for the food waste collection is assessed. First, Biochemical Methane Potential (BMP) tests were performed on four commercial types of bioplastic bags, including those designed only for the collection of food waste and the shoppers, that can be reused for the same purpose. Subsequently, an innovative approach for this kind of substrate was applied, subjecting two bags to semi-continuous co-digestion tests together with the food waste. Both tests were performed by comparing the behaviour of bioplastic bags with that of an alternative collection paper bag. Finally, tests to evaluate the influence of physical phenomena on the degradation of bioplastics were performed to better understand the results of biological tests. BMP tests indicated a good degradability (>71%) of bioplastic bags, while semi-continuous tests showed a much lower degradability (<27%), confirmed by the observation of the undigested bag pieces. On the contrary, the paper bag presents interesting characteristics, because its degradability in the semi-continuous tests (82%) resulted even higher than that observed in the BMP tests (74%). These results highlight an important difference between the bags mono-digestion by means of BMP tests and the semi-continuous co-digestion tests with food waste, which better simulate the full-scale operational conditions.


Assuntos
Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Alimentos , Metano
2.
Archaea ; 2021: 8894455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628124

RESUMO

The effect of the amount of hydrogen supplied for the in situ biological biogas upgrading was investigated by monitoring the process and evolution of the microbial community. Two parallel reactors, operated at 37°C for 211 days, were continuously fed with sewage sludge at a constant organic loading rate of 1.5 gCOD∙(L∙d)-1 and hydrogen (H2). The molar ratio of H2/CO2 was progressively increased from 0.5 : 1 to 7 : 1 to convert carbon dioxide (CO2) into biomethane via hydrogenotrophic methanogenesis. Changes in the biogas composition become statistically different above the stoichiometric H2/CO2 ratio (4 : 1). At a H2/CO2 ratio of 7 : 1, the methane content in the biogas reached 90%, without adversely affecting degradation of the organic matter. The possibility of selecting, adapting, and enriching the original biomass with target-oriented microorganisms able to biologically convert CO2 into methane was verified: high throughput sequencing of 16S rRNA gene revealed that hydrogenotrophic methanogens, belonging to Methanolinea and Methanobacterium genera, were dominant. Based on the outcomes of this study, further optimization and engineering of this process is feasible and needed as a means to boost energy recovery from sludge treatment.


Assuntos
Biocombustíveis , Microbiota , Reatores Biológicos , Dióxido de Carbono , Hidrogênio , Metano , RNA Ribossômico 16S/genética
3.
Waste Manag ; 43: 196-202, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26028558

RESUMO

The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Cloretos/química , Cinza de Carvão , Itália , Osmose , Reciclagem , Sulfatos/química , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...