Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
IEEE J Transl Eng Health Med ; 2: 1900110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27170872

RESUMO

Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures.

2.
Med Phys ; 40(7): 071902, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23822439

RESUMO

PURPOSE: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction. METHODS: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time. RESULTS: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 ± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased to 100%, 99.2%, and 96.5% for the CS, ablation, and lasso catheters, respectively. Subjective clinical evaluation by three experienced electrophysiologists showed that the detection and tracking results were clinically acceptable. CONCLUSIONS: The proposed detection and tracking methods are automatic and can detect and track CS, ablation, and lasso catheters simultaneously and in real-time. The accuracy of the proposed methods is sub-mm and the methods are robust toward low-dose x-ray fluoroscopic images, which are mainly used during EP procedures to maintain low radiation dose.


Assuntos
Catéteres , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Ablação por Cateter , Fluoroscopia , Humanos , Fatores de Tempo
3.
Ultrasound Med Biol ; 39(6): 993-1005, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23453630

RESUMO

The use of ultrasound imaging for guidance of cardiac interventional procedures is limited by the small field of view of the ultrasound volume. A larger view can be created by image-based registration of several partially overlapping volumes, but automatic registration is likely to fail unless the registration is initialized close to the volumes' correct alignment. In this article, we use X-ray images to track a transesophageal ultrasound probe and thereby provide initial position information for the registration of the ultrasound volumes. The tracking is possible using multiple X-rays or just a single X-ray for each probe position. We test the method in a phantom experiment and find that with at least 50% overlap, 88% of volume pairs are correctly registered when tracked using three X-rays and 86% when using single X-rays. Excluding failed registrations with errors greater than 10 mm, the average registration accuracy is 2.92 mm between ultrasound volumes and 4.75 mm for locating an ultrasound volume in X-ray space. We conclude that the accuracy and robustness of the registrations are sufficient to provide useful images for interventional guidance.


Assuntos
Ecocardiografia Tridimensional/métodos , Ecocardiografia Transesofagiana/métodos , Imagem Multimodal/métodos , Radiografia Intervencionista/métodos , Técnica de Subtração , Ultrassonografia de Intervenção/métodos , Ecocardiografia Tridimensional/instrumentação , Ecocardiografia Transesofagiana/instrumentação , Humanos , Imagem Multimodal/instrumentação , Imagens de Fantasmas , Radiografia Intervencionista/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia de Intervenção/instrumentação
4.
Med Image Anal ; 16(1): 38-49, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21624845

RESUMO

Two-dimensional (2D) X-ray imaging is the dominant imaging modality for cardiac interventions. However, the use of X-ray fluoroscopy alone is inadequate for the guidance of procedures that require soft-tissue information, for example, the treatment of structural heart disease. The recent availability of three-dimensional (3D) trans-esophageal echocardiography (TEE) provides cardiologists with real-time 3D imaging of cardiac anatomy. Increasingly X-ray imaging is now supported by using intra-procedure 3D TEE imaging. We hypothesize that the real-time co-registration and visualization of 3D TEE and X-ray fluoroscopy data will provide a powerful guidance tool for cardiologists. In this paper, we propose a novel, robust and efficient method for performing this registration. The major advantage of our method is that it does not rely on any additional tracking hardware and therefore can be deployed straightforwardly into any interventional laboratory. Our method consists of an image-based TEE probe localization algorithm and a calibration procedure. While the calibration needs to be done only once, the GPU-accelerated registration takes approximately from 2 to 15s to complete depending on the number of X-ray images used in the registration and the image resolution. The accuracy of our method was assessed using a realistic heart phantom. The target registration error (TRE) for the heart phantom was less than 2mm. In addition, we assess the accuracy and the clinical feasibility of our method using five patient datasets, two of which were acquired from cardiac electrophysiology procedures and three from trans-catheter aortic valve implantation procedures. The registration results showed our technique had mean registration errors of 1.5-4.2mm and 95% capture range of 8.7-11.4mm in terms of TRE.


Assuntos
Ecocardiografia Tridimensional/métodos , Ecocardiografia Transesofagiana/métodos , Fluoroscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Radiografia Intervencionista/métodos , Técnica de Subtração , Ultrassonografia de Intervenção/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-22003655

RESUMO

In this paper, we propose to create a rich database of synthetic time series of 3D echocardiography (US) images using simulations of a cardiac electromechanical model, in order to study the relationship between electrical disorders and kinematic patterns visible in medical images. From a real 4D sequence, a software pipeline is applied to create several synthetic sequences by combining various steps including motion tracking and segmentation. We use here this synthetic database to train a machine learning algorithm which estimates the depolarization times of each cardiac segment from invariant kinematic descriptors such as local displacements or strains. First experiments on the inverse electrokinematic learning are demonstrated on the synthetic 3D US database and are evaluated on clinical 3D US sequences from two patients with Left Bundle Branch Block.


Assuntos
Ecocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Algoritmos , Inteligência Artificial , Fenômenos Biomecânicos , Simulação por Computador , Bases de Dados Factuais , Eletrofisiologia/métodos , Coração/fisiologia , Humanos , Movimento (Física)
6.
Int J Biomed Imaging ; 2008: 368406, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18401457

RESUMO

This paper exploits the idea that each individual brain region has a specific connection profile to create parcellations of the cortical mantle using MR diffusion imaging. The parcellation is performed in two steps. First, the cortical mantle is split at a macroscopic level into 36 large gyri using a sulcus recognition system. Then, for each voxel of the cortex, a connection profile is computed using a probabilistic tractography framework. The tractography is performed from q fields using regularized particle trajectories. Fiber ODF are inferred from the q-balls using a sharpening process focusing the weight around the q-ball local maxima. A sophisticated mask of propagation computed from a T1-weighted image perfectly aligned with the diffusion data prevents the particles from crossing the cortical folds. During propagation, the particles father child particles in order to improve the sampling of the long fascicles. For each voxel, intersection of the particle trajectories with the gyri lead to a connectivity profile made up of only 36 connection strengths. These profiles are clustered on a gyrus by gyrus basis using a K-means approach including spatial regularization. The reproducibility of the results is studied for three subjects using spatial normalization.

7.
IEEE Trans Med Imaging ; 27(3): 342-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334430

RESUMO

Positron emission tomography (PET) is a useful tool for pharmacokinetics studies in rodents during the preclinical phase of drug and tracer development. However, rodent organs are small as compared to the scanner's intrinsic resolution and are affected by physiological movements. We present a new method for the segmentation of rodent whole-body PET images that takes these two difficulties into account by estimating the pharmacokinetics far from organ borders. The segmentation method proved efficient on whole-body numerical rat phantom simulations, including 3-14 organs, together with physiological movements (heart beating, breathing, and bladder filling). The method was resistant to spillover and physiological movements, while other methods failed to obtain a correct segmentation. The radioactivity concentrations calculated with this method also showed an excellent correlation with the manual delineation of organs in a large set of preclinical images. In addition, it was faster, detected more organs, and extracted organs' mean time activity curves with a better confidence on the measure than manual delineation.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/veterinária , Imagem Corporal Total/métodos , Imagem Corporal Total/veterinária , Algoritmos , Animais , Inteligência Artificial , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/veterinária , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/instrumentação
8.
Artigo em Inglês | MEDLINE | ID: mdl-18051137

RESUMO

A novel method called local shape controlled voting has been developed for spherical object detection in 3D voxel images. By introducing local shape properties into the voting procedure of normal overlap, the proposed method improves the capability of differentiating spherical objects from other structures, as the normal overlap technique only measures the 'density' of normal overlapping, while how the normals are distributed in 3D is not discovered. The proposed method was applied to computer aided detection of pulmonary nodules based on helical CT images. Experiments showed that this method attained a better performance compared to the original normal overlap technique.


Assuntos
Algoritmos , Inteligência Artificial , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Radiology ; 245(1): 140-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17885187

RESUMO

PURPOSE: To determine whether computer-aided detection (CAD) applied to computed tomographic (CT) colonography can help improve sensitivity of polyp detection by less-experienced radiologist readers, with colonoscopy or consensus used as the reference standard. MATERIALS AND METHODS: The release of the CT colonographic studies was approved by the individual institutional review boards of each institution. Institutions from the United States were HIPAA compliant. Written informed consent was waived at all institutions. The CT colonographic studies in 30 patients from six institutions were collected; 24 images depicted at least one confirmed polyp 6 mm or larger (39 total polyps) and six depicted no polyps. By using an investigational software package, seven less-experienced readers from two institutions evaluated the CT colonographic images and marked or scored polyps by using a five-point scale before and after CAD. The time needed to interpret the CT colonographic findings without CAD and then to re-evaluate them with CAD was recorded. For each reader, the McNemar test, adjusted for clustered data, was used to compare sensitivities for readers without and with CAD; a Wilcoxon signed-rank test was used to analyze the number of false-positive results per patient. RESULTS: The average sensitivity of the seven readers for polyp detection was significantly improved with CAD-from 0.810 to 0.908 (P=.0152). The number of false-positive results per patient without and with CAD increased from 0.70 to 0.96 (95% confidence interval for the increase: -0.39, 0.91). The mean total time for the readings was 17 minutes 54 seconds; for interpretation of CT colonographic findings alone, the mean time was 14 minutes 16 seconds; and for review of CAD findings, the mean time was 3 minutes 38 seconds. CONCLUSION: Results of this feasibility study suggest that CAD for CT colonography significantly improves per-polyp detection for less-experienced readers.


Assuntos
Competência Clínica , Pólipos do Colo/diagnóstico por imagem , Colonografia Tomográfica Computadorizada/métodos , Diagnóstico por Computador , Pólipos Intestinais/diagnóstico por imagem , Doenças Retais/diagnóstico por imagem , Reações Falso-Positivas , Estudos de Viabilidade , Humanos , Sensibilidade e Especificidade
10.
Med Phys ; 33(5): 1398-411, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16752576

RESUMO

The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with "sticks," short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Tomografia Computadorizada Espiral/métodos , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-17354769

RESUMO

A novel approach for generating a set of features derived from properties of patterns of curvature is introduced as a part of a computer aided colonic polyp detection system. The resulting sensitivity was 84% with 4.8 false positives per volume on an independent test set of 72 patients (56 polyps). When used in conjunction with other features, it allowed the detection system to reach an overall sensitivity of 94% with a false positive rate of 4.3 per volume.


Assuntos
Algoritmos , Inteligência Artificial , Pólipos do Colo/diagnóstico por imagem , Colonografia Tomográfica Computadorizada/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Med Image Comput Comput Assist Interv ; 9(Pt 2): 694-701, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17354833

RESUMO

With the growing acceptance of nonrigid registration as a useful tool to perform clinical research, and in particular group studies, the storage space needed to hold the resulting transforms is deemed to become a concern for vector field based approaches, on top of the traditional computation time issue. In a recent study we lead, which involved the registration of more than 22,000 pairs of T1 MR volumes, this constrain appeared critical indeed. In this paper, we propose to decompose the vector field on a wavelet basis, and let the registration algorithm minimize the number of non-zero coefficients by introducing an L1 penalty. This enables a sparse representation of the vector field which, unlike parametric representations, does not confine the estimated transform into a small parametric space with a fixed uniform smoothness : nonzero wavelet coefficients are optimally distributed depending on the data. Furthermore, we show that the iconic feature registration framework allows to embed the non-differentiable L1 penalty into a C1 energy that can be efficiently minimized by standard optimization techniques.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Inteligência Artificial , Humanos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...