Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 164975, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336402

RESUMO

Perennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable. As efforts to develop perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new crop development, but we argue these may be mitigated by implementation of recent technological advances in crop breeding and genetics such as low-cost genotyping, genomic selection, and genome editing. With aggressive research investment in the development of new perennial grain crops, they can be developed and deployed to provide atmospheric greenhouse gas reductions.


Assuntos
Agricultura , Melhoramento Vegetal , Humanos , Grão Comestível , Produtos Agrícolas , Solo
2.
Plant Sci ; 324: 111432, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029895

RESUMO

Abscisic acid (ABA) regulates seed dormancy and therefore preharvest sprouting (PHS) in wheat. This study investigated the contribution of transcriptional regulation of ABA metabolism and signaling genes to genetic variation in dormancy of wheat seeds. Our results showed that genetic variation in seed dormancy is highly correlated with ABA content (r > 0.86), which, in turn, was closely associated with the expression levels of ABA biosynthesis genes, TaNCED1 (r = 0.78) and TaNCED2 (r = 0.67). A relatively lower correlation was observed between ABA content and the expression levels of ABA catabolism genes, TaCYP707A1 (r = 0.51) and TaCYP707A2 (r = 0.57). The expression level of TaABI5 exhibited strong associations with the levels of ABA (r = 0.8) and seed dormancy (r > 0.9), indicating the importance of seed ABA sensitivity in mediating genetic variation in dormancy. Furthermore, high positive correlations were prevalent between the expression patterns of TaABI5 and TaNCED1 (r = 0.91) or TaNCED2 (r = 0.82). Overall, our results implicated the significance of TaNCEDs and TaABI5 in regulating genetic variation in ABA level and sensitivity and thereby seed dormancy, highlighting the potential use of these genes to develop molecular markers for incorporating PHS resistance in wheat.


Assuntos
Dormência de Plantas , Triticum , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Germinação/genética , Dormência de Plantas/genética , Sementes/metabolismo , Triticum/metabolismo
3.
Front Plant Sci ; 11: 834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595690

RESUMO

Parallels exist between the domestication of new species and the improvement of various crops through selection on traits which favor the sowing, harvest and retention of yield potential and the directed efforts to improve their agronomics, disease resistance and quality characteristics. Common selection pressures may result in the parallel selection of orthologs underlying these traits and homologies between crop species can be exploited by plant breeders to improve germplasm. Perennial grains and oilseeds are a class of proposed crops for improving the diversity and sustainability of agricultural systems. Maximilian sunflower (Helianthus maximiliani Schrad.) is a perennial crop wild relative of sunflower (Helianthus annuus L.) and a candidate perennial oilseed species. Understanding parallels between cultivated H. annuus and H. maximiliani may provide new tools for the development of Maximilian sunflower and other wild relatives of sunflower as crops to enhance functional diversity in cropping systems. F2 populations of Maximilian sunflower segregating for traits associated with the domestication ideotype of cultivated sunflower including branching architecture, capitulum morphology and flowering time were developed to investigate parallels between H. maximiliani and H. annuus. Genotype-by-sequencing (GBS) was employed to genotype novel Maximilian sunflower populations and perform quantitative-trait-loci (QTL) analysis. A total of 11 QTL in five regions were identified across 21 linkage groups using 4142 GBS derived single nucleotide polymorphism markers called using the sunflower reference genome as a guide. A major QTL on linkage group 17b, associated with aspects of floral development and apical dominance, was discovered and corresponds with a known domestication QTL hotspot in H. annuus and candidate genes were identified. This suggests the potential to exploit orthologs for neo-domestication of H. maximiliani for traits such as branching architecture, timing of anthesis, and capitulum size and morphology for the development of a perennial oilseed crop from wild relatives of cultivated sunflower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...