Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 834267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356775

RESUMO

In recent years mesenchymal stromal cells (MSCs) have received a great deal of interest for the treatment of major diseases, but clinical translation and market authorization have been slow. This has been due in part to a lack of standardization in cell manufacturing protocols, as well as a lack of biologically meaningful cell characterization tools and release assays. Cell production strategies to date have involved complex manual processing in an open environment which is costly, inefficient and poses risks of contamination. The NANT 001 bioreactor has been developed for the automated production of small to medium cell batches for autologous use. This is a closed, benchtop system which automatically performs several processes including cell seeding, media change, real-time monitoring of temperature, pH, cell confluence and cell detachment. Here we describe a validation of the bioreactor in an environment compliant with current good manufacturing practice (cGMP) to confirm its utility in replacing standardized manual processing. Stromal vascular fraction (SVF) was isolated from lipoaspirate material obtained from healthy donors. SVF cells were seeded in the bioreactor. Cell processing was performed automatically and cell harvesting was triggered by computerized analysis of images captured by a travelling microscope positioned beneath the cell culture flask. For comparison, the same protocol was performed in parallel using manual methods. Critical quality attributes (CQA) assessed for cells from each process included cell yield, viability, surface immunophenotype, differentiation propensity, microbial sterility and endotoxin contamination. Cell yields from the bioreactor cultures were comparable in the manual and automated cultures and viability was >90% for both. Expression of surface markers were consistent with standards for adipose-derived stromal cell (ASC) phenotype. ASCs expanded in both automated and manual processes were capable of adipogenic and osteogenic differentiation. Supernatants from all cultures tested negative for microbial and endotoxin contamination. Analysis of labor commitment indicated considerable economic advantage in the automated system in terms of operator, quality control, product release and management personnel. These data demonstrate that the NANT 001 bioreactor represents an effective option for small to medium scale, automated, closed expansion of ASCs from SVF and produces cell products with CQA equivalent to manual processes.

2.
Nucleic Acids Res ; 35(6): 1751-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17324944

RESUMO

High Mobility Group A (HMGA) is a family of architectural nuclear factors which play an important role in neoplastic transformation. HMGA proteins are multifunctional factors that associate both with DNA and nuclear proteins that have been involved in several nuclear processes including transcription. HMGA localization is exclusively nuclear but, to date, the mechanism of nuclear import for these proteins remains unknown. Here, we report the identification and characterization of a nuclear localization signal (NLS) for HMGA2, a member of the HMGA family. The NLS overlaps with the second of the three AT-hooks, the DNA-binding domains characteristic for this group of proteins. The functionality of this NLS was demonstrated by its ability to target a heterologous beta-galactosidase/green fluorescent protein fusion protein to the nucleus. Mutations to alanine of basic residues within the second AT-hook resulted in inhibition of HMGA2 nuclear localization and impairment of its function in activating the cyclin A promoter. In addition, HMGA2 was shown to directly interact with the nuclear import receptor importin-alpha2 via the second AT-hook. HMGA proteins are overexpressed and rearranged in a variety of tumors; our findings can thus help elucidating their role in neoplastic transformation.


Assuntos
Motivos AT-Hook , Núcleo Celular/metabolismo , Proteína HMGA2/química , Proteína HMGA2/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Aminoácidos Básicos/análise , Animais , Linhagem Celular , Núcleo Celular/química , Cricetinae , Proteína HMGA2/análise , Humanos , Camundongos , Dados de Sequência Molecular , Deleção de Sequência , Fatores de Transcrição/análise , alfa Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...