Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 42(4): 392-407, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382518

RESUMO

Idiopathic scoliosis (IS) is a spinal disorder affecting up to 3% of otherwise healthy children. IS has a strong familial genetic component and is believed to be genetically complex due to significant variability in phenotype and heritability. Previous studies identified putative loci and variants possibly contributing to IS susceptibility, including within extracellular matrix, cilia, and actin networks, but the genetic architecture and underlying mechanisms remain unresolved. Here, we used whole-exome sequencing from three affected individuals in a multigenerational family with IS and identified 19 uncommon variants (minor allele frequency < 0.05). Genotyping of additional family members identified a candidate heterozygous variant (H1115Q, G>C, rs142032413) within the ciliary gene KIF7, a regulator within the hedgehog (Hh) signaling pathway. Resequencing of the second cohort of unrelated IS individuals and controls identified several severe mutations in KIF7 in affected individuals only. Subsequently, we generated a mutant zebrafish model of kif7 using CRISPR-Cas9. kif7co63/co63 zebrafish displayed severe scoliosis, presenting in juveniles and progressing through adulthood. We observed no deformities in the brain, Reissner fiber, or central canal cilia in kif7co63/co63 embryos, although alterations were seen in Hh pathway gene expression. This study suggests defects in KIF7-dependent Hh signaling, which may drive pathogenesis in a subset of individuals with IS.


Assuntos
Cinesinas , Escoliose , Peixe-Zebra , Animais , Cílios/metabolismo , Humanos , Cinesinas/genética , Mutação , Escoliose/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
2.
Nature ; 585(7826): 563-568, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939088

RESUMO

Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.


Assuntos
Endotelinas/metabolismo , Evolução Molecular , Crista Neural/citologia , Petromyzon/metabolismo , Transdução de Sinais , Xenopus/metabolismo , Animais , Desenvolvimento Ósseo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Linhagem da Célula , Endotelinas/genética , Feminino , Cabeça/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Ligantes , Masculino , Petromyzon/genética , Petromyzon/crescimento & desenvolvimento , Receptores de Endotelina/deficiência , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Xenopus/genética , Xenopus/crescimento & desenvolvimento
3.
Sci Rep ; 6: 34282, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677704

RESUMO

Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates.

4.
Development ; 142(23): 4180-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26511928

RESUMO

Lamprey is one of only two living jawless vertebrates, a group that includes the first vertebrates. Comparisons between lamprey and jawed vertebrates have yielded important insights into the origin and evolution of vertebrate physiology, morphology and development. Despite its key phylogenetic position, studies of lamprey have been limited by their complex life history, which makes traditional genetic approaches impossible. The CRISPR/Cas9 system is a bacterial defense mechanism that was recently adapted to achieve high-efficiency targeted mutagenesis in eukaryotes. Here we report CRISPR/Cas9-mediated disruption of the genes Tyrosinase and FGF8/17/18 in the sea lamprey Petromyzon marinus, and detail optimized parameters for producing mutant F0 embryos. Using phenotype and genotype analyses, we show that CRISPR/Cas9 is highly effective in the sea lamprey, with a majority of injected embryos developing into complete or partial mutants. The ability to create large numbers of mutant embryos without inbred lines opens exciting new possibilities for studying development in lamprey and other non-traditional model organisms with life histories that prohibit the generation of mutant lines.


Assuntos
Sistemas CRISPR-Cas , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Lampreias/genética , Mutagênese , Animais , Sequência de Bases , Padronização Corporal , Clonagem Molecular , Evolução Molecular , Genótipo , Hibridização In Situ , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/metabolismo , Mutação , Fenótipo , Filogenia , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo
5.
Evodevo ; 6: 18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984292

RESUMO

BACKGROUND: Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensively studied in jawed vertebrates (that is, gnathostomes) and invertebrate chordates, very little is known about the repertoire and developmental roles of RARs in cyclostomes, which are extant jawless vertebrates. Here, we present the first extensive study of cyclostome RARs focusing on three different lamprey species: the European freshwater lamprey, Lampetra fluviatilis, the sea lamprey, Petromyzon marinus, and the Japanese lamprey, Lethenteron japonicum. RESULTS: We identified four rar paralogs (rar1, rar2, rar3, and rar4) in each of the three lamprey species, and phylogenetic analyses indicate a complex evolutionary history of lamprey rar genes including the origin of rar1 and rar4 by lineage-specific duplication after the lamprey-hagfish split. We further assessed their expression patterns during embryonic development by in situ hybridization. The results show that lamprey rar genes are generally characterized by dynamic and highly specific expression domains in different embryonic tissues. In particular, lamprey rar genes exhibit combinatorial expression domains in the anterior central nervous system (CNS) and the pharyngeal region. CONCLUSIONS: Our results indicate that the genome of lampreys encodes at least four rar genes and suggest that the lamprey rar complement arose from vertebrate-specific whole genome duplications followed by a lamprey-specific duplication event. Moreover, we describe a combinatorial code of lamprey rar expression in both anterior CNS and pharynx resulting from dynamic and highly specific expression patterns during embryonic development. This 'RAR code' might function in regionalization and patterning of these two tissues by differentially modulating the expression of downstream effector genes during development.

6.
Dev Biol ; 397(2): 293-304, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446275

RESUMO

The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element differentiation can be clearly linked to the evolution of novel skeletal elements. We posit that changes in the expression of downstream regulators of skeletal differentiation, like barx1 and gdf5, is one mechanism by which head skeletal element number and articulation are altered during evolution.


Assuntos
Evolução Biológica , Região Branquial/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/metabolismo , Crânio/metabolismo , Xenopus laevis/metabolismo , Animais , Região Branquial/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Larva/metabolismo , Crânio/anatomia & histologia , Especificidade da Espécie , Estribo/anatomia & histologia , Xenopus laevis/genética
7.
Nature ; 518(7540): 534-7, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25487155

RESUMO

A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.


Assuntos
Evolução Biológica , Cartilagem , Cabeça , Anfioxos/anatomia & histologia , Anfioxos/crescimento & desenvolvimento , Crânio , Vertebrados/anatomia & histologia , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter/genética , Anfioxos/citologia , Larva/anatomia & histologia , Larva/citologia , Modelos Biológicos , Boca/anatomia & histologia , Crista Neural/citologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transdução de Sinais , Crânio/citologia , Crânio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Development ; 141(3): 629-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449839

RESUMO

A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.


Assuntos
Evolução Biológica , Osso e Ossos/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Cabeça/embriologia , Lampreias/embriologia , Osteogênese , Faringe/embriologia , Animais , Osso e Ossos/efeitos dos fármacos , Cartilagem/citologia , Cartilagem/efeitos dos fármacos , Cartilagem/embriologia , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lampreias/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Biológicos , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Faringe/efeitos dos fármacos , Faringe/metabolismo , Pirróis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tretinoína/farmacologia , Xenopus laevis
9.
Evol Dev ; 14(1): 104-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016978

RESUMO

Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.


Assuntos
Padronização Corporal/genética , Cordados não Vertebrados/embriologia , Camadas Germinativas/metabolismo , Lampreias/embriologia , RNA Mensageiro Estocado/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXF/genética , Animais , Cordados não Vertebrados/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/embriologia , Lampreias/genética , Larva/genética , Larva/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Zigoto/metabolismo
10.
Development ; 139(4): 720-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241841

RESUMO

Gene duplication has been proposed to drive the evolution of novel morphologies. After gene duplication, it is unclear whether changes in the resulting paralogs' coding-regions, or in their cis-regulatory elements, contribute most significantly to the assembly of novel gene regulatory networks. The Transcription Factor Activator Protein 2 (Tfap2) was duplicated in the chordate lineage and is essential for development of the neural crest, a tissue that emerged with vertebrates. Using a tfap2-depleted zebrafish background, we test the ability of available gnathostome, agnathan, cephalochordate and insect tfap2 paralogs to drive neural crest development. With the exception of tfap2d (lamprey and zebrafish), all are able to do so. Together with expression analyses, these results indicate that sub-functionalization has occurred among Tfap2 paralogs, but that neo-functionalization of the Tfap2 protein did not drive the emergence of the neural crest. We investigate whether acquisition of novel target genes for Tfap2 might have done so. We show that in neural crest cells Tfap2 directly activates expression of sox10, which encodes a transcription factor essential for neural crest development. The appearance of this regulatory interaction is likely to have coincided with that of the neural crest, because AP2 and SoxE are not co-expressed in amphioxus, and because neural crest enhancers are not detected proximal to amphioxus soxE. We find that sox10 has limited ability to restore the neural crest in Tfap2-deficient embryos. Together, these results show that mutations resulting in novel Tfap2-mediated regulation of sox10 and other targets contributed to the evolution of the neural crest.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Evolução Biológica , Crista Neural/fisiologia , Fatores de Transcrição SOXE/metabolismo , Fator 2 Ativador da Transcrição/genética , Animais , Cordados/anatomia & histologia , Cordados/classificação , Cordados/embriologia , Cordados/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Indução Embrionária , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lampreias/anatomia & histologia , Lampreias/embriologia , Lampreias/genética , Crista Neural/citologia , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXE/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
11.
PLoS One ; 6(7): e22474, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799866

RESUMO

The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates.


Assuntos
Cartilagem/metabolismo , Evolução Molecular , Vertebrados/genética , Animais , Cartilagem/citologia , Cartilagem/embriologia , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/genética , Condrogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Larva/genética , Crista Neural/citologia , Crista Neural/metabolismo , Especificidade de Órgãos , Vertebrados/embriologia , Vertebrados/crescimento & desenvolvimento
12.
Proc Natl Acad Sci U S A ; 107(40): 17262-7, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855630

RESUMO

The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this "Pre-pattern/Cooption" model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning.


Assuntos
Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Lampreias , Modelos Biológicos , Vertebrados/anatomia & histologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lampreias/anatomia & histologia , Lampreias/genética , Dados de Sequência Molecular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/genética
13.
J Cross Cult Gerontol ; 23(2): 181-97, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18386171

RESUMO

This article presents narrative accounts which illustrate ways that modernization and social change have transformed the daily lives of Abaluyia, especially older people, in rural western Kenya since the late nineteenth century. The narratives reveal history as lived experience, as observed and recorded by an anthropologist who has been doing research among Abaluyia in Bunyala and Samia over the past 25 years. The story involves continuity of cultural beliefs and practices, and it involves change-change imposed by the macro-events of globalizing processes, from colonialism to Structural Adjustment Programs, and change as people's adaptive responses to those processes, particularly how changing cultural practices have impacted elders. The grand narrative is historical, the overarching story of the incorporation of Kenya and Kenyans into the global political economy from the colonial period to the present. Other narratives are biographical, case studies of individuals from two extended families and their personal experiences of social change over the past century. The background narrative is autobiographical, the anthropologist's story of the practice of anthropological fieldwork and her own experiences and observations of social change in western Kenya. Since anthropological data over time become history, the approach here is both anthropological and historical.


Assuntos
Envelhecimento , Família , Mudança Social/história , Anedotas como Assunto , Antropologia Cultural , História do Século XX , História do Século XXI , Quênia , Política , Condições Sociais
14.
Gerontol Geriatr Educ ; 26(1): 117-35, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16260403

RESUMO

This article reprises four presentations on Gerontology Education in Kenya, a seminar at the 2004 Annual Meeting of the Association of Gerontology in Higher Education. It describes the process by which the Gerontology Institute of Georgia State University established a 3-year gerontology education and research partnership with Kenyatta University in Nairobi, Kenya, and the field experiences of two scholars who have conducted aging research in Kenya. We provide four key elements of cultural competence and recommendations for American gerontologists wishing to establish international linkages.


Assuntos
Envelhecimento/etnologia , Geriatria/educação , Serviços de Saúde para Idosos/organização & administração , Cooperação Internacional , Universidades/organização & administração , Idoso , Pesquisa Biomédica , Países em Desenvolvimento , Georgia , Humanos , Intercâmbio Educacional Internacional , Quênia , Competência Profissional , Ensino
15.
J Chem Ecol ; 30(6): 1143-52, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15303319

RESUMO

The rising level of atmospheric CO2 has stimulated several recent studies attempting to predict the effects of increased CO2 on ecological communities. However, most of these studies have been conducted in the benign conditions of the laboratory and in the absence of herbivores. In the current study, we utilized large octagonal chambers, which enclosed portions of an intact scrub-oak community to investigate the interactive effects of CO2 and insect herbivory on myrtle oak, Quercus myrtifolia. Specifically, we assessed the effects of ambient and elevated CO2 (2x current concentrations) on percent foliar nitrogen, C:N ratio, total relative foliar tannin content, and the presence of leaf damage caused by leaf mining and leaf chewing insects that feed on myrtle oak. Total foliar N declined and C:N ratios increased significantly in oaks in elevated CO2 chambers. The percentages of leaves damaged by either leafminers or leaf chewers tended to be lower in elevated compared to ambient chambers, but they co-occurred on leaves less than expected, regardless of CO2 treatment. Leaves that had been either mined or chewed exhibited a similar wounding or defensive response; they had an average of 25 and 21% higher protein binding ability, which is correlated with tannin concentration, compared to nondamaged control leaves, respectively. While the protein-binding ability (expressed as total percent tannin) of leaves from elevated CO2 was slightly higher than from leaves grown in ambient chambers, this difference was not significant.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Ecossistema , Insetos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Quercus/efeitos dos fármacos , Animais , Carbono/análise , Carbono/metabolismo , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/metabolismo , Insetos/fisiologia , Nitrogênio/análise , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ligação Proteica , Quercus/metabolismo , Quercus/parasitologia
16.
Am J Bot ; 91(11): 1757-66, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21652322

RESUMO

Interspecific plant hybridization is a common and evolutionarily important phenomenon. Here, the results of a study of hybridization in the Florida Keys between two species of sea oxeye daisy, Borrichia frutescens and B. arborescens, are reported. Nuclear and chloroplast genetic loci, log-likelihood assignment tests, and maximum likelihood estimates of genealogical class frequencies were used to identify hybrid and parent genotypes, to investigate the utility of leaf and flower morphology for hybrid identification, and to study symmetry and degree of introgression between the species. Genetic analyses confirmed the identity of the hybrid and parent plants that were used for the morphological studies. Together, leaf and flower morphology can be used to identify hybrid and parental types with moderate accuracy (4% error rate). Population genetic analyses indicate that, in spite of a significant level of hybridization, pure B. frutescens and B. arborescens are persisting in the hybrid zone. Of the nonparentals, about 18% appear to be F(1) hybrids, over 50% F(2) hybrids, and the remainder backcrossed individuals but only with the B. frutescens parent. It is postulated that the hybrid zone in the Florida Keys is being maintained by a combination of positive assortative mating and clonal reproduction.

17.
J Women Aging ; 15(2-3): 49-66; discussion 185-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14604001

RESUMO

Variety characterizes widows' experiences around the world and in Africa south of the Sahara. This article explores the socioeconomic and cultural contexts of African widowhood, using anthropological studies in a number of African societies, including the author's research among Abaluyia of western Kenya. Some features of African widowhood are characteristic of African women's lives regardless of their marital status: their embeddedness in kinship systems and dependence on those systems for claims to productive resources, their economic self-reliance (which does not mean prosperity), strongly gendered divisions of labor, and the pervasiveness of patriarchal gender relations. Other features are specific to widowhood, including remarriage, issues of personal autonomy, and loss of status, access to productive resources and social support. Colonial and postcolonial historical transformations, including Africa's current dire economic situation and the AIDS epidemic, are considered in relation to widows' lives. An interesting question (given the theme of this edited volume) is whether a husband' s death puts African widows "on their own again," and whether, given African systems of kinship and marriage, most African women (and indeed men, too) can ever be said to be "on their own."


Assuntos
Apoio Social , Viuvez/economia , Viuvez/etnologia , África/etnologia , Anedotas como Assunto , Feminino , Identidade de Gênero , Humanos , Internacionalidade , Estado Civil , Mudança Social , Fatores Socioeconômicos
18.
Oecologia ; 119(2): 275-280, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307978

RESUMO

The relative importance of bottom-up versus top-down forces, and the effect of productivity on community dynamics continue to be of much interest to ecologists. Trophic dynamic theories are difficult to test, as they require explicit knowledge of the many organisms involved, as well as the nature of the interactions between them. The Oksanen-Fretwell (OF) theory, which suggests that the relative roles of top-down and bottom-up factors vary with primary productivity, is well known in the literature, but is difficult to test rigorously. Recently, two experimental studies have tried to test OF theory. In this paper we discuss methodological problems associated with these studies that may weaken the conclusions drawn by the authors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...