Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(33): 13888-96, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23843017

RESUMO

Rate constants for the potentially important interstellar N((4)S) + CH(X(2)Πr) reaction have been measured in a continuous supersonic flow reactor over the range 56 K ≤T≤ 296 K using the relative rate technique employing both the N((4)S) + OH(X(2)Πi) and N((4)S) + CN(X(2)Σ(+)) reactions as references. Excess concentrations of atomic nitrogen were produced by the microwave discharge method upstream of the Laval nozzle and CH and OH radicals were created by the in situ pulsed laser photolysis of suitable precursor molecules. In parallel, quantum dynamics calculations of the title reaction have been performed based on accurate global potential energy surfaces for the 1(3)A' and 1(3)A'' states of HCN and HNC, brought about through a hierarchical construction scheme. Both adiabatic potential energy surfaces are barrierless, each one having two deep potential wells suggesting that this reaction is dominated by a complex-forming mechanism. The experimental and theoretical work are in excellent agreement, predicting a positive temperature dependence of the rate constant, in contrast to earlier experimental work at low temperature. The effects of the new low temperature rate constants on interstellar N2 formation are tested using a dense cloud model, yielding N2 abundances 10-20% lower than previously predicted.

2.
Science ; 334(6062): 1538-41, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22174248

RESUMO

More than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N((4)S) + OH((2)Π) → H((2)S) + NO((2)Π) reaction in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds.

3.
Chemphyschem ; 11(18): 4002-10, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20839269

RESUMO

Reactions of the hydroxyl radical with propene and 1-butene are studied experimentally in the gas phase in a continuous supersonic flow reactor over the range 50≤T/K≤224. OH radicals are produced by pulsed laser photolysis of H(2)O(2) at 266 nm in the supersonic flow and followed by laser-induced fluorescence in the (1, 0) A(2)Σ(+)←X(2)Π(3/2) band at about 282 nm. These reactions are found to exhibit negative temperature dependences over the entire temperature range investigated, varying between (3.1-19.2) and (4.2-28.6)×10(-11) cm(3) molecule(-1) s(-1) for the reactions of OH with propene and 1-butene, respectively. Quantum chemical calculations of the potential energy surfaces are used as the basis for energy- and rotationally resolved Rice-Ramsperger-Kassel-Marcus calculations to determine the rate constants over a range of temperatures and pressures. The negative temperature dependences of the rate constants are explained by competition between complex redissociation and passage to the adducts by using a model with two transition states. The results are compared and contrasted with earlier studies and discussed in terms of their potential relevance to the atmosphere of Saturn.

4.
Phys Chem Chem Phys ; 10(5): 729-37, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-19791456

RESUMO

The temperature dependence of the reactions of the dicarbon molecule in its ground singlet (X1Sigma(g)+) and first excited triplet (a 3Pi(u)) states with acetylene, methylacetylene, allene and propene has been studied using a recently constructed continuous supersonic flow reactor. Four Laval nozzles have been designed to access specified temperatures over the range of 77 < or = T < or = 220 K and measurements have been performed at 296 K under subsonic flow conditions. C2 was produced in its two lowest electronic states via the in situ multiphoton dissociation of C2Br4 at 266 nm. The time dependent losses of C2 in these two states in the presence of an excess of co-reagent species were simultaneously followed by laser-induced fluorescence in the Mulliken and Swan bands for the detection of singlet and triplet state C2, respectively. The rate coefficients were measured to be very fast, with values larger than 10(-10) cm3 molecule(-1) s(-1) and up to 5 x 10(-10) cm3 molecule(-1) s(-1). The reactions of 1C2 are seen to be essentially temperature independent from 77 < or = T < or = 296 K whereas the rate coefficients for the 3C2 reactions are seen to increase until they are equivalent to the 1C2 values at 77 K.

5.
Phys Chem Chem Phys ; 7(15): 2921-7, 2005 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16189612

RESUMO

The temperature dependences of the methylidyne radical reactions with methane, allene, methylacetylene and propene were studied. This work was carried out in a supersonic flow reactor coupled with pulsed laser photolysis (PLP) and laser-induced fluorescence (LIF) techniques. Three Laval nozzles were designed to provide uniform supersonic expansions of nitrogen at Mach 2 and of argon at Mach 2 and 3 to reach low temperatures, e.g. 170, 128 and 77 K, respectively. CH radicals were produced by PLP of CHBr3 at 266 nm and probed by LIF. The exponential decays of the CH fluorescence were acquired, hydrocarbons being introduced in excess. The rate constants for the CH+CH4 reaction are in good agreement with the temperature dependence proposed by Canosa et al. (A. Canosa, I. R. Sims, D. Travers, I. W. M. Smith and B. R. Rowe, Astron. Astrophys., 1997, 323, 644-651, ) i.e. 3.96x10(-8)(T/K)(-1.04) exp(-36.1 K/T) in the range 23-298 K. The rate constants of the CH+C3H4(allene), CH+C3H4(methylacetylene) and CH+C3H6(propene) reactions exhibit a small temperature dependence between 77 and 170 K, with a maximum rate around 100 K close to (4.3-4.6)x10(-10) cm3 molecule-1 s-1.


Assuntos
Radicais Livres/química , Hidrocarbonetos/química , Metano/química , Alcadienos/química , Alcenos/química , Alcinos/química , Argônio/química , Temperatura Baixa , Hidrocarbonetos Bromados/química , Cinética , Lasers , Nitrogênio/química , Fotólise , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...