Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 12(4): 1070-1087, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031549

RESUMO

Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Transplante de Microbiota Fecal , Humanos , Camundongos , Polifenóis/farmacologia , Polifenóis/uso terapêutico
2.
J Hepatol ; 69(3): 644-653, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802948

RESUMO

BACKGROUND & AIMS: Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. METHODS: In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. RESULTS: P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation. CONCLUSION: P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. LAY SUMMARY: During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.


Assuntos
Matriz Extracelular/metabolismo , Cirrose Hepática , Fígado , Miofibroblastos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais
3.
Hepatology ; 64(3): 941-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301647

RESUMO

UNLABELLED: Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH), to initiate growth, protect liver cells, and sustain remnant liver functions. Extracellular adenosine triphosphate rises in blood and bile after PH and contributes to liver regeneration, although purinergic receptors and mechanisms remain to be precisely explored. In this work we analyzed during regeneration after PH the involvement of P2X4 purinergic receptors, highly expressed in the liver. P2X4 receptor expression in the liver, liver histology, hepatocyte proliferation, plasma bile acid concentration, bile flow and composition, and lysosome distribution in hepatocytes were studied in wild-type and P2X4 knockout (KO) mice, before and after PH. P2X4 receptors were expressed in hepatocytes and Kupffer cells; in hepatocytes, P2X4 was concentrated in subcanalicular areas closely costained with lysosomal markers. After PH, delayed regeneration, hepatocyte necrosis, and cholestasis were observed in P2X4-KO mice. In P2X4-KO mice, post-PH biliary adaptation was impaired with a smaller increase in bile flow and HCO3 (-) biliary output, as well as altered biliary composition with reduced adenosine triphosphate and lysosomal enzyme release. In line with these data, lysosome distribution and biogenesis were altered in P2X4-KO compared with wild-type mice. CONCLUSION: During liver regeneration after PH, P2X4 contributes to the complex control of biliary homeostasis through mechanisms involving pericanalicular lysosomes, with a resulting impact on hepatocyte protection and proliferation. (Hepatology 2016;64:941-953).


Assuntos
Sistema Biliar/fisiologia , Regeneração Hepática , Fígado/metabolismo , Lisossomos/fisiologia , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Proliferação de Células , Células Cultivadas , Hepatectomia , Hepatócitos/fisiologia , Homeostase , Fígado/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...