Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30104426

RESUMO

Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.


Assuntos
Comportamento Animal , Variação Biológica Individual , Cognição , Animais
2.
Sci Rep ; 7(1): 12945, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021558

RESUMO

Animal cognitive abilities have traditionally been studied in the lab, but studying cognition in nature could provide several benefits including reduced stress and reduced impact on life-history traits. However, it is not yet clear to what extent cognitive abilities can be properly measured in the wild. Here we present the first comparison of the cognitive performance of individuals from the same population, assessed using an identical test, but in contrasting contexts: in the wild vs. in controlled captive conditions. We show that free-ranging great tits (Parus major) perform similarly to deprived, captive birds in a successive spatial reversal-learning task using automated operant devices. In both captive and natural conditions, more than half of birds that contacted the device were able to perform at least one spatial reversal. Moreover, both captive and wild birds showed an improvement of performance over successive reversals, with very similar learning curves observed in both contexts for each reversal. Our results suggest that it is possible to study cognitive abilities of wild animals directly in their natural environment in much the same way that we study captive animals. Such methods open numerous possibilities to study and understand the evolution and ecology of cognition in natural populations.


Assuntos
Animais Selvagens/fisiologia , Cognição/fisiologia , Passeriformes/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Curva de Aprendizado , Análise e Desempenho de Tarefas
3.
Neuropsychologia ; 75: 390-401, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26100560

RESUMO

Rapidly recognizing familiar people from their faces appears critical for social interactions (e.g., to differentiate friend from foe). However, the actual speed at which the human brain can distinguish familiar from unknown faces still remains debated. In particular, it is not clear whether familiarity can be extracted from rapid face individualization or if it requires additional time consuming processing. We recorded scalp EEG activity in 28 subjects performing a go/no-go, famous/non-famous, unrepeated, face recognition task. Speed constraints were used to encourage subjects to use the earliest familiarity information available. Event related potential (ERP) analyses show that both the N170 and the N250 components were modulated by familiarity. The N170 modulation was related to behaviour: subjects presenting the strongest N170 modulation were also faster but less accurate than those who only showed weak N170 modulation. A complementary Multi-Variate Pattern Analysis (MVPA) confirmed ERP results and provided some more insights into the dynamics of face recognition as the N170 differential effect appeared to be related to a first transitory phase (transitory bump of decoding power) starting at around 140 ms, which returned to baseline afterwards. This bump of activity was henceforth followed by an increase of decoding power starting around 200 ms after stimulus onset. Overall, our results suggest that rather than a simple single-process, familiarity for faces may rely on a cascade of neural processes, including a coarse and fast stage starting at 140 ms and a more refined but slower stage occurring after 200 ms.


Assuntos
Córtex Cerebral/fisiologia , Reconhecimento Facial/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Eletroencefalografia , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...