Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Crit Care ; 28(1): 189, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834995

RESUMO

BACKGROUND: The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU). METHODS: We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease: Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases. RESULTS: A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort. CONCLUSIONS: A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.


Assuntos
Injúria Renal Aguda , Unidades de Terapia Intensiva , Aprendizado de Máquina , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/terapia , Aprendizado de Máquina/tendências , Aprendizado de Máquina/normas , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Idoso , Estudos de Coortes , Curva ROC , Adulto
2.
Energy Adv ; 3(5): 1062-1072, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38766406

RESUMO

Dye-sensitized solar cells assembled with aqueous electrolytes are emerging as a sustainable photovoltaic technology suitable for safe indoor and portable electronics use. While the scientific community is exploring unconventional materials for preparing electrodes and electrolytes, this work presents the first study on zinc oxide as a semiconductor material to fabricate photoanodes for aqueous solar cells. Different morphologies (i.e., nanoparticles, multipods, and desert roses) are synthesized, characterized, and tested in laboratory-scale prototypes. This exploratory work, also integrated by a computational study and a multivariate investigation on the factors that influence electrode sensitization, confirms the possibility of using zinc oxide in the field of aqueous photovoltaics and opens the way to new morphologies and processes of functionalization or surface activation to boost the overall cell efficiency.

3.
Sci Rep ; 14(1): 9089, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643225

RESUMO

Patients in intensive care are exposed to the risk of microparticle infusion via extracorporeal lines and the resulting complications. A possible source of microparticle release could be the extracorporeal circuit used in blood purification techniques, such as continuous renal replacement therapy (CRRT). Disposable components of CRRT circuits, such as replacement bags and circuit tubing, might release microparticles such as salt crystals produced by precipitation in replacement bags and plastic microparticles produced by spallation. In-line filtration has proven effective in retaining microparticles both in in-vitro and in-vivo studies. In our study, we performed an in-vitro model of CRRT-treatment with the aim of detecting the microparticles produced and released into the circuit by means of a qualitative and quantitative analysis, after sampling the replacement and patient lines straddling a series of in-line filters. Working pressures and flows were monitored during the experiment. This study showed that microparticles are indeed produced and released into the CRRT circuit. The inclusion of in-line filters in the replacement lines allows to reduce the burden of microparticles infused into the bloodstream during extracorporeal treatments, reducing the concentration of microparticles from 14 mg/mL pre in-line filter to 11 mg/mL post in-line filter. Particle infusion and related damage must be counted among the pathophysiological mechanisms supporting iatrogenic damage due to artificial cross-talk between organs during CRRT applied to critically ill patients. This damage can be reduced by using in-line filters in the extracorporeal circuit.


Assuntos
Terapia de Substituição Renal Contínua , Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Filtração , Pressão
5.
Discov Nano ; 19(1): 28, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353903

RESUMO

The horizon of nanomedicine research is moving toward the design of therapeutic tools able to be completely safe per se, and simultaneously be capable of becoming toxic when externally activated by stimuli of different nature. Among all the stimuli, ultrasounds come to the fore as an innovative approach to produce cytotoxicity on demand in presence of NPs, without invasiveness, with high biosafety and low cost. In this context, zinc oxide nanoparticles (NPs) are among the most promising metal oxide materials for theranostic application due to their optical and semi-conductor properties, high surface reactivity, and their response to ultrasound irradiation. Here, ZnO nanocrystals constitute the stimuli-responsive core with a customized biomimicking lipidic shielding, resembling the composition of natural extracellular vesicles. This core-shell hybrid structure provides high bio- and hemocompatibility towards healthy cells and is here proofed for the treatment of Burkitt's Lymphoma. This is a very common haematological tumor, typically found in children, for which consolidated therapies are so far the combination of chemo-therapy drugs and targeted immunotherapy. In this work, the proposed safe-by-design antiCD38-targeted hybrid nanosystem exhibits an efficient selectivity toward cancerous cells, and an on-demand activation, leading to a significant killing efficacy due to the synergistic interaction between US and targeted hybrid NPs. Interestingly, this innovative treatment does not significantly affect healthy B lymphocytes nor a negative control cancer cell line, a CD38- acute myeloid leukemia, being thus highly specific and targeted. Different characterization and analyses confirmed indeed the effective formation of targeted hybrid ZnO NPs, their cellular internalization and the damages produced in Burkitt's Lymphoma cells only with respect to the other cell lines. The presented work holds promises for future clinical applications, as well as translation to other tumor types.

6.
Blood Purif ; 53(3): 181-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37992698

RESUMO

INTRODUCTION: Continuous renal replacement therapies (CRRTs) require constant monitoring and periodic treatment readjustments, being applied to highly complex patients, with rapidly changing clinical needs. To promote precision medicine in the field of renal replacement therapy and encourage dynamic prescription, the Acute Dialysis Quality Initiative (ADQI) recommends periodically measuring the solutes extracorporeal clearance with the aim of assessing the current treatment delivery and the gap from the therapeutic prescription (often intended as effluent dose). To perform this procedure, it is therefore necessary to obtain blood and effluent samples from the extracorporeal circuit to measure the concentrations of a target solute (usually represented by urea) in prefilter, postfilter, and effluent lines. However, samples must be collected simultaneously from the extracorporeal circuit ports, with the same suction flow at an unknown rate. METHODS: The proposed study takes the first step toward identifying the technical factors that should be considered in determining the optimal suction rate to collect samples from the extracorporeal circuit to measure the extracorporeal clearance for a specific solute. RESULTS: The results obtained identify the low suction rate (i.e., 1 mL/min) as an ideal parameter for an adequate sampling method. Low velocities do not perturb the external circulation system and ensure stability prevailing pressures in the circuit. Higher velocities can be performed only with blood flows above 120 mL/min preferably in conditions of appropriate filtration fraction. DISCUSSION/CONCLUSIONS: The specific value of aspiration flow rate must be proportioned to the prescription of CRRT treatments set by the clinician.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Oxigenação por Membrana Extracorpórea , Humanos , Diálise Renal , Terapia de Substituição Renal/métodos , Oxigenação por Membrana Extracorpórea/métodos , Ureia , Injúria Renal Aguda/terapia
7.
ACS Biomater Sci Eng ; 9(11): 6045-6057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37856794

RESUMO

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.


Assuntos
Técnicas Biossensoriais , L-Lactato Desidrogenase , Humanos , Estabilidade Enzimática , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais/métodos
8.
ACS Biomater Sci Eng ; 9(10): 5871-5885, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671648

RESUMO

Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.

9.
Nanoscale ; 15(35): 14628-14640, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37615550

RESUMO

The recent nanomedicine advancements have introduced a variety of smart nanoparticles in cancer treatment and diagnostics. However, their application to the clinic is still hindered by several challenges related to their biocompatibility, elimination and biodistribution. Here we propose breakable organosilica mesoporous nanoparticles, i.e. nanocages, able to efficiently incorporate cargo molecules and be coated, with different lipid compositions, to enhance their biomimetic behaviour. We exploit the electrostatic interactions between the organosilica surface and the opposite charge of the lipid mixtures in order to obtain an efficient organosilica coverage. The lipid-coated nanocages are proved to have an incredibly high hemocompatibility, significantly increased with respect to pristine nanocages, and excellent colloidal stability and biocompatibility. The cargo-loaded and lipid-coated nanocages are tested and compared in vitro on two different cancer cell lines, demonstrating the key role played by the lipid coating in mediating the internalization of the nanocages, evaluated by the enhanced and rapid cellular uptake. The efficient intracellular delivery of the therapeutic agents is then assured by the destruction of the organosilica, due to the disulfide bridges, introduced into the silica framework, that in reducing media, like the intracellular one, are reduced to thiols causing the breaking of the nanoparticles. The possibility to image and effectively kill cancer cells demonstrates the potentiality of the lipid-coated nanocages as a powerful tool in anticancer research and as a promising smart theranostic platform.


Assuntos
Biomimética , Sistemas de Liberação de Medicamentos , Distribuição Tecidual , Transporte Biológico , Lipídeos
10.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570567

RESUMO

Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from the recently produced and widely spread COVID vaccines, based on the combinational use of ionizable solid lipid nanoparticles, cholesterol, PEGylated lipids, and neutral lipids able to incorporate mRNA fragments. Here, we focus on the implementation of a lipidic formulation meant to be used as a smart coating of solid-state nanoparticles. The composition of this formulation is finely tuned to ensure efficient and stable shielding of the cargo. The resulting shell is a highly customized tool that enables the possibility of further functionalizations with targeting agents, peptides, antibodies, and fluorescent moieties for future in vitro and in vivo tests and validations. Finally, as a proof of concept, zinc oxide nanoparticles doped with iron and successively coated with this lipidic formulation are tested in a pancreatic cancer cell line, BxPC-3. The results show an astonishing increase in cell viability with respect to the same uncoated nanoparticles. The preliminary results presented here pave the way towards many different therapeutic approaches based on the massive presence of highly biostable and well-tolerated nanoparticles in tumor tissues, such as sonodynamic therapy, photodynamic therapy, hyperthermia, and diagnosis by means of magnetic resonance imaging.

11.
PLoS One ; 18(7): e0287398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490482

RESUMO

BACKGROUND: Acute Kidney Injury (AKI) is a major complication in patients admitted to Intensive Care Units (ICU), causing both clinical and economic burden on the healthcare system. This study develops a novel machine-learning (ML) model to predict, with several hours in advance, the AKI episodes of stage 2 and 3 (according to KDIGO definition) acquired in ICU. METHODS: A total of 16'760 ICU adult patients from 145 different ICU centers and 3 different countries (US, Netherland, Italy) are retrospectively enrolled for the study. Every hour the model continuously analyzes the routinely-collected clinical data to generate a new probability of developing AKI stage 2 and 3, according to KDIGO definition, during the ICU stay. RESULTS: The predictive model obtains an auROC of 0.884 for AKI (stage 2/3 KDIGO) prediction, when evaluated on the internal test set composed by 1'749 ICU stays from US and EU centers. When externally tested on a multi-centric US dataset of 6'985 ICU stays and multi-centric Italian dataset of 1'025 ICU stays, the model achieves an auROC of 0.877 and of 0.911, respectively. In all datasets, the time between model prediction and AKI (stage 2/3 KDIGO) onset is at least of 14 hours after the first day of ICU hospitalization. CONCLUSIONS: In this study, a novel ML model for continuous and early AKI (stage 2/3 KDIGO) prediction is successfully developed, leveraging only routinely-available data. It continuously predicts AKI episodes during ICU stay, at least 14 hours in advance when the AKI episode happens after the first 24 hours of ICU admission. Its performances are validated in an extensive, multi-national and multi-centric cohort of ICU adult patients. This ML model overcomes the main limitations of currently available predictive models. The benefits of its real-world implementation enable an early proactive clinical management and the prevention of AKI episodes in ICU patients. Furthermore, the software could be directly integrated with IT system of the ICU.


Assuntos
Injúria Renal Aguda , Estado Terminal , Adulto , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Unidades de Terapia Intensiva , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/terapia , Injúria Renal Aguda/etiologia , Aprendizado de Máquina
12.
ACS Biomater Sci Eng ; 9(11): 5924-5932, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36535896

RESUMO

Extracellular Vesicles (EVs) are the protagonists in cell communication and membrane trafficking, being responsible for the delivery of innumerable biomolecules and signaling moieties. At the moment, they are of paramount interest to researchers, as they naturally show incredibly high efficiency and specificity in delivering their cargo. For these reasons, EVs are employed or inspire the development of nanosized therapeutic delivery systems. In this Perspective, we propose an innovative strategy for the rational design of EV-mimicking vesicles (EV-biomimetics) for theranostic scopes. We first report on the current state-of-the-art use of EVs and their byproducts, such as surface-engineered EVs and EV-hybrids, having an artificial cargo (drug molecule, genetic content, nanoparticles, or dye incorporated in their lumen). Thereafter, we report on the new emerging field of EV-mimicking vesicles for theranostic scopes. We introduce an approach to prepare new, fully artificial EV-biomimetics, with particular attention to maintaining the natural reference lipidic composition. We overview those studies investigating natural EV membranes and the possible strategies to identify key proteins involved in site-selective natural homing, typical of EVs, and their cargo transfer to recipient cells. We propose the use also of molecular simulations, in particular of machine learning models, to approach the problem of lipid organization and self-assembly in natural EVs. We also discuss the beneficial feedback that could emerge combining the experimental tests with atomistic and molecular simulations when designing an EV-biomimetics lipid bilayer. The expectations from both research and industrial fields on fully artificial EV-biomimetics, having the same key functions of natural ones plus new diagnostic or therapeutic functions, could be enormous, as they can greatly expand the nanomedicine applications and guarantee on-demand and scalable production, off-the-shelf storage, high reproducibility of morphological and functional properties, and compliance with regulatory standards.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Medicina de Precisão , Nanomedicina , Biomimética , Reprodutibilidade dos Testes , Vesículas Extracelulares/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555455

RESUMO

Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account. Considering these limitations and the intrinsic capability of phospholipidic bilayers to act as a biocompatible shield, their exploitation for effectively encasing solid-state nanoparticles seems a promising strategy to broaden the frontiers of cancer nanomedicine, also providing the possibility to engineer the lipid bilayers to further enhance the therapeutic potential of such nanotools. This work aims to give a comprehensive overview of the latest developments in the use of artificial liposomes and naturally derived extracellular vesicles for the coating of solid-state nanoparticles for cancer treatment, starting from in vitro works until the up-to-date advances and current limitations of these nanopharmaceutics in clinical applications, passing through in vivo and 3D cultures studies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipossomos/uso terapêutico , Nanomedicina , Bicamadas Lipídicas , Neoplasias/tratamento farmacológico
14.
RSC Adv ; 12(48): 31142-31155, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349027

RESUMO

In this work, the co-immobilization of formate dehydrogenase (FDH) and glycerol dehydrogenase (GlyDH) enzymes is proposed to reduce CO2 into formic acid, an important chemical intermediate. The reduction of carbon dioxide is carried out by FDH to obtain formic acid, simultaneously, the GlyDH regenerated the nicotinamide cofactor in the reduced form (NADH) by the oxidation of glycerol into dihydroxyacetone. Natural zeolite was selected as immobilization support given its good properties and low cost. The natural zeolite was modified with subsequent acid-alkaline attacks to obtain a mesostructurization of the clinoptilolite. The two enzymes were co-immobilized on clinoptilolite, previously hetero-functionalized with amino and glyoxyl groups. The distribution of the enzymes was confirmed by fluorescence microscopy analysis. Furthermore, a great increase in the retained activity for the formate dehydrogenase enzyme was noted, passing from 18% to 89%, when the mesostructured clinoptilolite was used as support. The immobilization yield of formate dehydrogenase and glycerol dehydrogenase is around 100% with all the supports studied. The promising results suggest a possible development of this procedure in enzyme immobilization and biocatalysis. The biocatalysts were characterized to find the optimal pH and temperature. Furthermore, a thermal stability test at 50 °C was carried out on both enzymes, in free and immobilized forms. Finally, it was shown that the biocatalyst is effective in reducing CO2, both by using the cofactor in the reduced form (NADH) or the oxidized form (NAD+), obtaining NADH through the regeneration with glycerol in this latter case.

15.
Biomed Microdevices ; 24(4): 35, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36279001

RESUMO

Ultrasounds are already broadly exploited in clinical diagnostics and are now becoming a powerful and not harmful tool in antitumoral therapies, as they are able to produce damages towards cancer cells, thank to inertial cavitation and temperature increase. The use of US alone or combined to molecular compounds, microbubbles or solid-state nanoparticles is the focus of current research and clinical trials, like thermoablation, drug sonoporation or sonodynamic therapies. In the present work, we discuss on the non-thermal effects of ultrasound and the conditions which enable oxygen radical production and which role they can have in provoking the death of different cancer cell lines. In this perspective, we set a mathematical model to predict the pressure spatial distribution in a defined water sample volume and thus obtain a map of acoustic pressures and acoustic intensities of the applied ultrasound at different input powers. We then validate and verify these numerical results with direct acoustic measurements and by detecting the production of reactive oxygen species (ROS) by means of sonochemiluminescence (SCL) and electron paramagnetic resonance (EPR) spectroscopy, applied to the same water sample volume and using the same US input parameters adopted in the simulation. Finally, the various US conditions are applied to two different set of cancer cell lines, a cervical adenocarcinoma and a hematological cancer, Burkitt's lymphoma. We hypothesize how the ROS generation can influence the recorded cell death. In a second set of experiments, the role of semiconductor metal oxide nanocrystals, i.e. zinc oxide, is also evaluated by adding them to the water and biological systems. In particular, the role of ZnO in enhancing the ROS production is verified. Furthermore, the interplay among US and ZnO nanocrystals is evaluated in provoking cancer cell death at specific conditions. This study demonstrates a useful correlation between numerical simulation and experimental acoustic validation as well as with ROS measurement at both qualitative and quantitative levels during US irradiation of simple water solution. It further tries to translate the obtained results to justify one of the possible mechanisms responsible of cancer cell death. It thus aims to pave the way for the use of US in cancer therapy and a better understanding on the non-thermal effect that a specific set of US parameters can have on cancer cells cultured in vitro.


Assuntos
Nanopartículas , Neoplasias , Óxido de Zinco , Humanos , Espécies Reativas de Oxigênio , Microbolhas , Neoplasias/diagnóstico por imagem , Água
16.
Cell Biosci ; 12(1): 61, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568919

RESUMO

BACKGROUND: We propose an efficient method to modify B-cell derived EVs by loading them with a nanotherapeutic stimuli-responsive cargo and equipping them with antibodies for efficient targeting of lymphoma cells. RESULTS: The post-isolation engineering of the EVs is accomplished by a freeze-thaw method to load therapeutically-active zinc oxide nanocrystals (ZnO NCs), obtaining the so-called TrojanNanoHorse (TNH) to recall the biomimetism and cytotoxic potential of this novel nanoconstruct. TNHs are further modified at their surface with anti-CD20 monoclonal antibodies (TNHCD20) achieving specific targeting against lymphoid cancer cell line. The in vitro characterization is carried out on CD20+ lymphoid Daudi cell line, CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (B lymphocytes). The TNH shows nanosized structure, high colloidal stability, even over time, and good hemocompatibility. The in vitro characterization shows the high biocompatibility, targeting specificity and cytotoxic capability. Importantly, the selectivity of TNHCD20 demonstrates significantly higher interaction towards the target lymphoid Daudi cell line compared to the CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (lymphocytes). An enhanced cytotoxicity directed against Daudi cancer cells is demonstrated after the TNHCD20 activation with high-energy ultrasound shock-waves (SW). CONCLUSION: This work demonstrates the efficient re-engineering of EVs, derived from healthy cells, with inorganic nanoparticles and monoclonal antibodies. The obtained hybrid nanoconstructs can be on-demand activated by an external stimulation, here acoustic pressure waves, to exploit a cytotoxic effect conveyed by the ZnO NCs cargo against selected cancer cells.

17.
J Nephrol ; 35(8): 2047-2056, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35554875

RESUMO

OBJECTIVES: The purpose of this study was to externally validate algorithms (previously developed and trained in two United States populations) aimed at early detection of severe oliguric AKI (stage 2/3 KDIGO) in intensive care units patients. METHODS: The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the "AmsterdamUMC database") admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients. RESULTS: The deep learning model had an area under the ROC curve (AUC) of 0,907 (± 0,007SE) with a sensitivity and specificity of 80% and 89%, respectively, for identifying oliguric AKI episodes. Logistic regression models had an AUC of 0,877 (± 0,005SE) with a sensitivity and specificity of 80% and 81%, respectively. These results were comparable to those obtained in the two US populations upon which the algorithms were previously developed and trained. CONCLUSION: External validation on the European sample confirmed the accuracy of the algorithms, previously investigated in the US population. The models show high accuracy in both the European and the American databases even though the two cohorts differ in a range of demographic and clinical characteristics, further underlining the validity and the generalizability of the two analytical approaches.


Assuntos
Injúria Renal Aguda , Aprendizado Profundo , Humanos , Estado Terminal , Injúria Renal Aguda/diagnóstico , Unidades de Terapia Intensiva , Oligúria/diagnóstico , Oligúria/etiologia
18.
ACS Omega ; 7(8): 6591-6600, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252655

RESUMO

Recent advances in optical imaging techniques rely on the use of nanosized contrast agents for in vitro and in vivo applications. We report on an imaging method based on the inertial cavitation of ultrasound-irradiated water solutions that lead to sonoluminescence (SL), here, newly proposed in combination with semiconductor nanoparticles, in particular, aminopropyl-functionalized zinc oxide nanocrystals. The obtained measurements confirm the ability of such nanocrystals to increase the sonoluminescence emission, together with the ability to modify the SL spectrum when compared to the pure water behavior. In particular, it is shown that the UV component of SL is absorbed by the semiconductor behavior that is also confirmed in different biologically relevant media. Finally, optical images of nanocrystal-assisted SL are acquired for the first time, in particular, in biological buffers, revealing that at low ultrasound intensities, SL is measurable only when the nanocrystals are present in solution. All of these results witness the role of amine-functionalized zinc oxide nanocrystals for sonoluminescence emission, which makes them very good candidates as efficient nanocontrast agents for SL imaging for biological and biomedical applications.

19.
ACS Appl Nano Mater ; 5(11): 17212-17225, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851991

RESUMO

We propose the use of iron-doped zinc oxide nanoparticles (Fe:ZnO NPs) showing theranostic capabilities and being synergistically active against pancreatic ductal adenocarcinoma once combined with mechanical pressure waves, such as shock waves. Fe:ZnO NPs are synthesized by employing oleic acid as a capping agent and are functionalized with amino-propyl groups. We first report their superior characteristics with respect to undoped ZnO NPs in terms of magnetic properties, colloidal stability, cytocompatibility, and internalization into BxPC-3 pancreatic cancer cells in vitro. These Fe:ZnO NPs are also cytocompatible toward normal pancreatic cells. We then perform a synergistic cell treatment with both shock waves and Fe:ZnO NPs once internalized into cells. We also evaluate the contribution to the synergistic activity of the NPs located in the extracellular space. Results show that both NPs and shock waves, when administered separately, are safe to cells, while their combination provokes an enhanced cell death after 24 h. Various mechanisms are then considered, such as dissolution of NPs, production of free radicals, and cell membrane disruption or permeation. It is understood so far that iron-doped ZnO NPs can degrade intracellularly into zinc cations, while the use of shock waves produce cell membrane permeabilization and possible rupture. In contrast, the production of reactive oxygen species is here ruled out. The provoked cell death can be recognized in both apoptotic and necrotic events. The proposed work is thus a first proof-of-concept study enabling promising future applications to deep-seated tumors such as pancreatic cancer, which is still an unmet clinical need with a tremendous death rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...