Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 76(9): 1051-1067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35668608

RESUMO

Comprehensive mineralogical and petrographic studies require analytical methods capable to report the distribution of major to trace elements within crystals in order to unravel their formation conditions and subsequent evolution. Additionally, the investigation of transition elements (e.g., Ti, V, Cr, Mn, Fe, and Zn) is essential for the comprehension of substitution processes within colored minerals. This study is conducted on a zoned kyanite crystal from a deformed quartz vein found within garnet-kyanite-biotite-hematite-plagioclase±staurolite±sillimanite paragneiss of Thassos Island, Greece. Herein, we show the efficiency of combining conventional, for example, cathodoluminescence, electron probe microanalysis (EPMA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and new methods, for example, micro-laser-induced breakdown spectroscopy (µLIBS), micro-X-ray fluorescence (µXRF), and Raman spectroscopy, to determine the chemical and crystallographic features of minerals. The simple chemistry of this crystal offers an ideal case to compare and valuate the potential of combined spectroscopy techniques to analyze minerals. We demonstrate that µLIBS and µXRF are perfectly adapted to perform multi-element imaging of major to trace elements down to the ppm level within a pluricentimetric crystal (2.3 x 0.5 cm) prior to quantitative analyses. We also highlight the benefit of cathodoluminescence and Raman mapping in the investigation of crystallographic features within minerals. The multispectroscopic approach enabled us to correlate growth stages of kyanite with the polymetamorphic history of the sample. Our results also highlight the spatial dependence of Ti for the generation of blue zonation by Fe2+-Ti4+ substitutions with Al3+.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 119980, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116416

RESUMO

A portable Raman device with a 532 nm excitation laser and a portable infrared spectrometer with ATR (Attenuated Total Reflection) mode were used to analyse the spectral features associated with the identification and compositional variation of Ca-Mg-Fe-Mn natural carbonate minerals with a calcite structure (calcite, ankerite, dolomite, siderite, rhodochrosite, and magnesite). A systematic study of the variations of the peak positions with various compositional ratios was carried out. Most of the band positions were shifted to lower wavenumbers with increasing ionic radius or atomic mass of the divalent cations but the band of the translational lattice (T) mode in Raman and the symmetric bending (ν4) band in the mid-infrared were the most sensitive. Therefore, the elemental variation of the Ca-Mg-Fe-Mn ratio in this carbonate series can be estimated from Raman and infrared band positions from spectra acquired with portable spectrometers.


Assuntos
Minerais , Análise Espectral Raman , Carbonato de Cálcio , Carbonatos , Espectrofotometria Infravermelho
3.
Anal Chim Acta ; 1114: 66-73, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359516

RESUMO

Today, Laser-Induced Breakdown Spectroscopy (LIBS) imaging is in full change. Indeed, always more stable instrumentations are developed, which significantly increases the signal quality and naturally the analytical potential of the technique for the characterization of complex and heterogeneous samples at the micro-scale level. Obviously, other intrinsic features such as a limit of detection in the order of ppm, a high field of view and high acquisition rate make it one of the most complete chemical imaging techniques to date. It is thus possible in these conditions to acquire several million spectra from one single sample in just hours. Managing big data in LIBS imaging is the challenge ahead. In this paper, we put forward a new spectral analysis strategy, called embedded k-means clustering, for simultaneous detection of major and minor compounds and the generation of associated localization maps. A complex rock section with different phases and traces will be explored to demonstrate the value of this approach.

4.
J Synchrotron Radiat ; 19(Pt 1): 10-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186639

RESUMO

The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.


Assuntos
Síncrotrons/instrumentação , Arsenitos/análise , Núcleo Celular/química , Citosol/química , Dano ao DNA/efeitos dos fármacos , Microanálise por Sonda Eletrônica , Complexo de Golgi/fisiologia , Células Hep G2 , Humanos , Manganês/metabolismo , Mitocôndrias/química , Nanopartículas/uso terapêutico , Espectrometria por Raios X/métodos , Espectroscopia por Absorção de Raios X/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...