Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1188, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331837

RESUMO

Traditional fully-deterministic algorithms, which rely on physical equations and mathematical models, are the backbone of many scientific disciplines for decades. These algorithms are based on well-established principles and laws of physics, enabling a systematic and predictable approach to problem-solving. On the other hand, AI-based strategies emerge as a powerful tool for handling vast amounts of data and extracting patterns and relationships that might be challenging to identify through traditional algorithms. Here, we bridge these two realms by using AI to find an optimal mapping of meteorological features predicted two days ahead by the state-of-the-art numerical weather prediction model by the European Centre for Medium-range Weather Forecasts (ECMWF) into lightning flash occurrence. The prediction capability of the resulting AI-enhanced algorithm turns out to be significantly higher than that of the fully-deterministic algorithm employed in the ECMWF model. A remarkable Recall peak of about 95% within the 0-24 h forecast interval is obtained. This performance surpasses the 85% achieved by the ECMWF model at the same Precision of the AI algorithm.

2.
Meccanica ; 57(3): 567-575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35039689

RESUMO

The spreading of the virus-containing droplets exhaled during respiratory events, e.g., cough, is an issue of paramount importance for the prevention of many infections such as COVID-19. According to the scientific literature, remarkable differences can be ascribed to several parameters that govern such complex and multiphysical problem. Among these, a particular influence appears associated with the different airflows typical of male and female subjects. Focusing on a typical cough event, we investigate this aspect by means of highly-resolved direct numerical simulations of the turbulent airflow in combination with a comprehensive Lagrangian particle tracking model for the droplet motion and evaporation. We observe and quantify major differences between the case of male and female subjects, both in terms of the droplet final reach and evaporation time. Our results can be associated with the different characteristics in the released airflow and thus confirm the influence of the subject gender (or other physical properties providing different exhalation profiles) on both short-range and long-range airborne transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...