Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(3): e20230187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909570

RESUMO

The present work aimed to characterize and compare the catalytic properties of amylases from Cunninghamella echinulata and Rhizopus microsporus. The highest production of amylase by C. echinulata, 234.94 U g-1 of dry substrate (or 23.49 U mL-1), was obtained using wheat bran as a substrate, with 50-55% initial moisture and kept at 28 °C for 48 h. The highest production of amylases by R. microsporus, 224.85 U g-1 of dry substrate (or 22.48 U mL-1), was obtained cultivating wheat bran with 65% initial moisture at 45 °C for 24 h. The optimal activity of the amylases was observed at pH 5.0 at 60 °C for C. echinulata enzymes and at pH 4.5 at 65 °C for R. microsporus. The amylases produced by C. echinulata were stable at pH 4.0-8.0, while the R. microsporus enzymes were stable at pH 4.0-10.0. The amylases produced by C. echinulata remained stable for 1 h at 50 °C and the R. microsporus amylases maintained catalytic activity for 1 h at 55 °C. The enzymatic extracts of both fungi hydrolyzed starches from different plant sources and showed potential for liquefaction of starch, however the amylolytic complex of C. echinulata exhibited greater saccharifying potential.


Assuntos
Amilases , Cunninghamella , Amilases/química , Fibras na Dieta , Amido , Concentração de Íons de Hidrogênio
2.
An Acad Bras Cienc ; 93(1): e20191349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787686

RESUMO

Microbial ß-glucosidases can be used in several industrial processes, including production of biofuels, functional foods, juices, and beverages. In the present work, production of ß-glucosidase by solid state cultivation of the fungus Thermoascus crustaceus in a low-cost cultivation medium (comprising agroindustrial residues) was evaluated. The highest production of ß-glucosidase, about 415.1 U/g substrate (or 41.51 U/mL), was obtained by cultivating the fungus in wheat bran with 70% humidity, during 96 h at 40°C. The enzymatic activity was optimum at pH 4.5 and 65°C. ß-Glucosidase maintained its catalytic activity when incubated at a pH range of 4.0-8.0 and temperature of 30-55°C. The enzyme was strongly inhibited by glucose; even when the substrate and glucose concentrations were equal, the inhibition was not reversed, suggesting a non-competitive inhibition. In the presence of up to 10% ethanol, ß-glucosidase maintained its catalytic activity. In addition to ß-glucosidase, the enzymatic extract showed activity of 36 U/g for endoglucanase, 256.2 U/g for xylanase, and 18.2 U/g for ß-xylosidase. The results allow to conclude that the fungus T. crustaceus has considerable potential for production of ß-glucosidase and xylanase when cultivated in agroindustrial residues, thereby reducing the cost of these biocatalysts.


Assuntos
Celulase , Thermoascus , Eurotiales , Fermentação , Concentração de Íons de Hidrogênio , Thermoascus/metabolismo , beta-Glucosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...