Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 103(11): e3802, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35796439

RESUMO

Total biomass production of plant monocultures growing over a range of densities and harvested after a period of growth increases monotonically with density and then levels out at higher densities. This pattern is called constant final yield (CFY) and is considered one of the most general phenomena in plant ecology. If CFY applies to plant communities, it would be a key to understanding and predicting many community-level phenomena. We tested two primary hypotheses experimentally: (1) Mixtures of several species show CFY. (2) If so, the proportion of biomass production by the component species in a mixture does not change at densities above the density that reaches CFY. We performed a series of glasshouse experiments over 3 years using a "community density series," in which the overall density of five species was varied while their proportions remained unchanged. In the first experiment, we grew a mixture of annual and perennial herbaceous species in mesocosms, and all species were also grown in monocultures at the corresponding densities. A similar experiment was performed in the second and third years, but only with annuals. A third experiment with mixtures only was performed in pots over 2 years. In all cases, aboveground biomass was harvested, separated by species, dried, and weighed. Perennials with underground storage organs produced maximum aboveground biomass at low or intermediate densities. In the second experiment, two of the species produced maximum biomass at the second-highest density in monoculture, while mixtures of all five species showed classical CFY behavior, and the contribution of the species to the mixture changed very little above the lowest density producing CFY. The results of the third experiment were also consistent with the hypotheses. In conclusion, CFY in aboveground biomass production was observed in communities of annual species, and the contribution of the individual species was relatively insensitive to an increase in density above that reaching CFY, i.e., competitive performance of the species changed with density until CFY was reached. Evidence for CFY was stronger in mixture than in monoculture. Coexistence theory must include density as well as frequency dependence if densities are below CFY.


Assuntos
Biomassa , Fenômenos Fisiológicos Vegetais , Biodiversidade , Plantas/metabolismo , Especificidade da Espécie , Densidade Demográfica
2.
Front Microbiol ; 11: 1045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528445

RESUMO

There have been very few studies on the effects of plant competition on the rhizosphere bacterial community. To investigate the impacts of intra- and interspecific plant competition, we analyzed the responses of rhizosphere bacterial communities to plant density as determined by 16S rRNA gene targeted sequencing. We included five weedy plant species growing in field soil in monocultures and mixed cultures at three densities in a greenhouse experiment. The rhizosphere bacterial community of each species changed more with density in a mixture of all five plant species than in monocultures, so intra- and interspecific plant competition had different effects on the bacterial community. For the dominant plant competitor, Centaurea cyanus, neither intra- nor interspecific competition had major effects on the composition of its rhizosphere bacterial communities. In contrast, the bacterial communities of the weakest competitor, Trifolium repens, were affected differently by intra- and interspecific competition. During increasing intraspecific competition T. repens maintained a highly specialized bacterial community dominated by Rhizobium; while during interspecific competition, the relative abundance of Rhizobium declined while other nitrogen fixing and potentially plant growth promoting taxa became more abundant. Contrary to previous observations made for soil microbial communities, the bacterial rhizosphere community of the weakest competitor did not become more similar to that of the dominant species. Thus, the process of competition, as well as the plant species themselves, determined the rhizosphere bacterial community. Our results emphasize the role of plant-plant interactions for rhizosphere bacterial communities. These effects may feedback to affect plant-plant interactions, and this is an important hypothesis for future research.

3.
Microorganisms ; 8(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979031

RESUMO

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.

4.
Chem Biodivers ; 11(3): 419-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24634071

RESUMO

Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence.


Assuntos
Aldeídos/química , Monoterpenos/química , Triticum/crescimento & desenvolvimento , Monoterpenos Acíclicos , Aldeídos/farmacologia , Germinação/efeitos dos fármacos , Monoterpenos/farmacologia , Óleos Voláteis/química , Estereoisomerismo , Triticum/efeitos dos fármacos , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...