Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(1): 12-20, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31829589

RESUMO

This paper reports a study of the quantum reaction dynamics and kinetics of the F + HD reaction at low and ultralow temperatures, focusing on the range from the Wigner limit up to 50 K. Close coupling time-independent quantum reactive scattering calculations for the production of HF and DF molecules have been carried out on two potential energy surfaces differing in the description of the reaction entrance channel. This case is computationally more demanding than the cases of F with H2 and D2 ( De Fazio et al. Frontiers in Chemistry 2019 , 7 , 328 ) but offers a wider phenomenology regarding the roles of quantum mechanical effects of tunneling, of virtual states, and of resonances. The results show that at the temperatures in the cold and ultracold regimes small changes in the entrance channel long-range interaction induce surprising near threshold features. The presence of a virtual state close to the reactive threshold gives rise to a marked anti-Arrhenius behavior of the rate constants below 100 mK. This effect enhances reaction rates by about 2 orders of magnitude, making them of the same order as those at room temperature and confining the onset of the Wigner regime in the microkelvin region.

2.
Front Chem ; 7: 328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157204

RESUMO

Integral cross sections and rate constants for the prototypical chemical reactions of the fluorine atom with molecular hydrogen and deuterium have been calculated over a wide interval of collision energy and temperature ranging from the sub-thermal (50 K) down to the ultra-cold regimes (0.5 mK). Rigorous close coupling time-independent quantum reactive scattering calculations have been carried out on two potential energy surfaces, differing only at long-range in the reactants' channel. The results show that tunnel, resonance and virtual state effects enhance under-barrier reactivity giving rise to pronounced deviations from the Arrhenius law as temperature is lowered. Within the ultra-cold domain (below 1 mK), the reactivity is governed by virtual state effects and by tunneling through the reaction barrier; in the cold regime (1 mK-1 K), the shape resonances in the entrance channel of the potential energy surface make the quantum tunneling contribution larger so enhancing cross sections and rate constants by about one order of magnitude; at higher temperatures (above 10 K), the tunneling pathway enhanced by the constructive interference between two Feshbach resonances trapped in the reaction exit channel competes with the thermally activated mechanism, as the energy gets closer to the reaction barrier height. The results show that at low temperatures cross sections and rate constants are extremely sensitive to small changes in the long-range intermolecular interaction in the entrance channel of the potential energy surface, as well as to isotopic substitution.

3.
Chemistry ; 22(35): 12518-26, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27470487

RESUMO

Focus in the present paper is on the analysis of total and partial ionization cross sections, measured in absolute value as a function of the collision energy, representative of the probability of ionic product formation in selected electronic states in Ne*-H2 O, H2 S, and NH3 collisions. In order to characterize the imaginary part of the optical potential, related to electronic couplings, we generalize a methodology to obtain direct information on the opacity function of these reactions. Such a methodology has been recently exploited to test the real part of the optical potential (S. Falcinelli et al., Chem. Eur. J., 2016, 22, 764-771). Depending on the balance of noncovalent contributions, the real part controls the approach of neutral reactants, the removal of ionic products, and the structure of the transition state. Strength, range, and stereoselectivity of electronic couplings, triggering these and many other reactions, are directly obtained from the present investigation.

4.
J Phys Chem A ; 120(27): 5288-99, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27186680

RESUMO

Quantum scattering calculations within the time-independent approach in an extended interval of energies were performed for the title reaction on four ab initio potential energy surfaces. The calculated integral cross sections, vibrational branching ratios, and rate constants are compared with scattering experiments as well as with chemical kinetics rate data available for this system for both the HF and DF channels. The calculations on the CSZ (J. Chem. Phys. 2015, 142, 024303) and LWAL (J. Chem. Phys. 2007, 127, 174302) surfaces are in close agreement between them and reproduce satisfactorily the experimental measurements. The agreement with the experiments is improved with respect to calculations on the earlier SW (J. Chem. Phys. 1996, 104, 6515) and FXZ (J. Chem. Phys. 2008, 129, 011103) surfaces. The results presented here witness the remarkable progress made by quantum chemistry calculations in describing the interatomic interactions governing the dynamics and kinetics of this reaction. They also suggest that comparison with translationally and rotationally averaged experimental observables is not sufficient to assess the relative accuracy of highly accurate potential energy surfaces. The dynamics and kinetics calculations show that temperatures lower than 50 K or molecular beam energy spread below 1 meV must be reached to discriminate the accuracy of the LWAL and the CSZ surfaces.

5.
Chemistry ; 22(2): 764-71, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26633846

RESUMO

Recent experiments on the title subject, performed with a high-resolution crossed-beam apparatus, have provided the total ionization cross sections as a function of the collision energy between noble gas atoms, electronically excited in their metastable states (Ng*), and H2 O, H2 S, and NH3 reagents, as well as the emitted electron energy spectra. This paper presents a rationalization of all the experimental findings in a unifying picture to cast light on the basic chemical properties of Ng* under conditions of great relevance both from a fundamental and from an applied point of view. The importance of this investigation is that it isolates the selective role of the intermolecular halogen and hydrogen bonds, to assess their anisotropic effects on the stereodynamics of the promoted ionization reactions, and to model energy transfer and reactivity in systems of applied interest, such as planetary atmospheres, plasmas, lasers, and flames.

6.
J Chem Phys ; 143(16): 164306, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520512

RESUMO

A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas -NH3 collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginary component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne*((3)P), He*((3)S), He*((1)S)-NH3. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.

7.
J Chem Phys ; 138(24): 244302, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23822239

RESUMO

The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for the intensity of the resonance enhanced multiphoton ionization (REMPI 2 + 1) signal is suggested.


Assuntos
Deutério/química , Fluoretos/química , Ácido Fluorídrico/química , Hidrogênio/química , Lítio/química , Algoritmos , Teoria Quântica
8.
J Chem Phys ; 137(24): 244306, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23277935

RESUMO

In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000); C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)] of the HeH(2)(+) system. New diatomic curves for the H(2)(+) and HeH(+) molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H(2)(+) (v = 0,...,5 and j = 1,...,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.

9.
Phys Chem Chem Phys ; 13(18): 8571-82, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21468432

RESUMO

Exact quantum reactive scattering calculations in the collision energy range 1-250 meV have been carried out for both the isotopic product channels of the title system. The dynamical studies compares an ab initio potential energy surface (PES) recently appeared in the literature (J. Chem. Phys., 2008, 129, 011103) with other phenomenological PESs. Vibrational branching ratios, cross sections and rate constants are presented and compared with molecular beam scattering experiments as well as with chemical kinetics data. In particular, the agreement of the vibrational branching ratios with experimental measurements is improved with respect to previous studies on other PESs, mainly because of the presence of a broad peak in the HF(v' = 3) integral cross section completely absent in the previous simulations. This feature, observed by molecular beam experiments, is the fingerprint of a new reaction mechanism operative in the dynamics described by the new PES. A conjecture for its origin, able to explain many of its characteristic aspects, is analyzed and discussed.

10.
J Chem Phys ; 129(6): 064303, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18715065

RESUMO

In this paper, we present the results of a theoretical investigation on the dynamics of the title reaction at collision energies below 1.2 kcal/mol using rigorous quantum reactive scattering calculations. Vibrationally resolved integral and differential cross sections, as well as product rotational distributions, have been calculated using two electronically adiabatic potential energy surfaces, developed by us on the basis of semiempirical modifications of the entrance channel. In particular, we focus our attention on the role of the exothermicity and of the exit channel region of the interaction on the experimental observables. From the comparison between the theoretical results, insight about the main mechanisms governing the reaction is extracted, especially regarding the bimodal structure of the HF(v = 2) nascent rotational state distributions. A good overall agreement with molecular beam scattering experiments has been obtained.

11.
J Chem Phys ; 125(13): 133109, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17029435

RESUMO

In this paper we present integral cross sections (in the 5-220 meV collision energy range) and rate constants (in the 100-300 K range of temperature) for the F+HD reaction leading to HF+D and DF+H. The exact quantum reactive scattering calculations were carried out using the hyperquantization algorithm on an improved potential energy surface which incorporates the effects of open shell and fine structure of the fluorine atom in the entrance channel. The results reproduce satisfactorily molecular beam scattering experiments as well as chemical kinetics data for both the HF and DF channels. In particular, the agreement of the rate coefficients and the vibrational branching ratios with experimental measurements is improved with respect to previous studies. At thermal and subthermal energies, the rates are greatly influenced by tunneling through the reaction barrier. Therefore exchange of deuterium is shown to be penalized with respect to exchange of hydrogen, and the isotopic branching exhibits a strong dependence on translational energy. Also, it is found that rotational excitation of the reactant HD molecule enhances the production of HF and decreases the reactivity at the D end, obtaining insight on the reaction stereodynamics.

12.
J Phys Chem A ; 110(16): 5458-63, 2006 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-16623475

RESUMO

The matrices of electrostatic and spin-orbit Hamiltonians for the system of a 2P atom interacting with a closed shell diatomic molecule in uncoupled, coupled, and complex-valued representations for electronic diabatic basis functions are rederived, and the unitary transformations connecting them are given explicitly. The links to previous derivations are established and existing inconsistencies are identified and eliminated. It is proven that the block-diagonalization of a 6 x 6 matrix of the electronic Hamiltonian is a result of using the basis functions with well-defined properties with respect to time reversal. Consideration of time-reversal symmetry also enforces phase consistency relevant for applications to multisurface reactive scattering and photodetachment spectroscopy calculations, as well as for perspective studies of inelastic effects in cold and ultracold environments. These and further developments are briefly sketched.

13.
J Chem Phys ; 123(5): 054314, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16108646

RESUMO

We propose a new method for the direct and efficient evaluation of the Felix Smith's lifetime Q matrix for reactive scattering problems. Simultaneous propagation of the solution to a set of close-coupled equations together with its energy derivative allows one to avoid common problems pertinent to the finite-difference approach. The procedure is implemented on a reactive scattering code which employs the hyperquantization algorithm and the Johnson-Manolopoulos [J. Comput. Phys. 13, 455 (1973); J. Chem. Phys 85, 6425 (1986)] propagation to obtain the complete S matrix and scattering observables. As an application of the developed formalism, we focus on the total angular momentum dependence of narrow under-barrier resonances supported by van der Waals wells of the title reaction. Using our method, we fully characterize these metastable states obtaining their positions and lifetimes from Lorentzian fits to the largest eigenvalue of the lifetime matrix. Remarkable splittings of the resonances observed at J>0 are rationalized in terms of a hyperspherical model. In order to provide an insight on the decay mechanism, the Q-matrix eigenvectors are analyzed and the dominant channels populated during the decomposition of metastable states are determined. Possible relevance of the present results to reactive scattering experiments is discussed.

14.
J Chem Phys ; 121(23): 11675-90, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15634134

RESUMO

We report a study on the behavior with total angular momentum J of several resonances occurring at collision energies below or slightly above the reaction barrier in the F+H2-->HF+H reaction. Resonance positions and widths are extracted from exact time-independent quantum mechanical calculations using the hyperquantization algorithm and Smith's Q-matrix formalism which exploits complete S-matrix information. The results confirm previous work but provide much greater insight. Identification of quasi-bound states responsible for the resonances based on adiabatic models for the long-range atom-molecule interactions both in the entrance and exit channels, is successful except for the feature occurring at the lowest energy, which is found to overlap with an exit-channel resonance for J approximately 7. The two features are analyzed as overlapping resonances and their excellent Lorentzian fits, with well-behaved J-dependences of positions and widths, support the interpretation of the low-energy feature as a resonance to be associated to the triatomic transition state of the reaction. Resonance role on the reactive observables (integral cross sections and angular distributions) is investigated. The mechanism leading to forward scattering in the reactive differential cross section is commented, while the effects on rate constants, as well as the sensitivity of the resonance pattern to modification of the potential energy surface, are fully discussed elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...