Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36592124

RESUMO

Several species in the oomycete genus Peronosclerospora cause downy mildew on maize and can result in significant yield losses in Asia. Bio-surveillance of these pathogens is a high priority to prevent epidemics on maize in the United States and consequent damage to the US economy. The unresolved taxonomy and dearth of molecular resources for Peronosclerospora spp. hinder these efforts. P. sorghi is a pathogen of sorghum and maize with a global distribution, for which limited diversity has been detected in the southern USA. We characterized the genome, transcriptome, and mitogenome of an isolate, representing the US pathotype 6. The highly homozygous genome was assembled using 10× Genomics linked reads and scaffolded using Hi-C into 13 chromosomes. The total assembled length was 303.2 Mb, larger than any other oomycete previously assembled. The mitogenome was 38 kb, similar in size to other oomycetes, although it had a unique gene order. Nearly 20,000 genes were annotated in the nuclear genome, more than described for other downy mildew causing oomycetes. The 13 chromosomes of P. sorghi were highly syntenic with the 17 chromosomes of Peronospora effusa with conserved centromeric regions and distinct chromosomal fusions. The increased assembly size and gene count of P. sorghi is due to extensive retrotransposition, resulting in putative pseudogenization. Ancestral genes had higher transcript abundance and were enriched for differential expression. This study provides foundational resources for analysis of Peronosclerospora and comparisons to other oomycete genera. Further genomic studies of global Peronosclerospora spp. will determine the suitability of the mitogenome, ancestral genes, and putative pseudogenes for marker development and taxonomic relationships.


Assuntos
Oomicetos , Peronospora , Sorghum , Zea mays/genética , Sorghum/genética , Pseudogenes , Oomicetos/genética , Peronospora/genética , Grão Comestível/genética , Doenças das Plantas/genética
2.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454230

RESUMO

Understanding the basis of hybrid vigor remains a key question in crop breeding and improvement, especially for rootstock development where F1 hybrids are extensively utilized. Full-sibling UCB-1 F1 seedling rootstocks are widely planted in commercial pistachio orchards that are generated by crossing 2 highly heterozygous outbreeding parental trees of Pistacia atlantica (female) and P. integerrima (male). This results in extensive phenotypic variability, prompting costly removal of low-yielding small trees. To identify the genetic basis of this variability, we assembled chromosome-scale genome assemblies of the parental trees of UCB-1. We genotyped 960 UCB-1 trees in an experimental orchard for which we also collected multiyear phenotypes. We genotyped an additional 1,358 rootstocks in 6 commercial pistachio orchards and collected single-year tree-size data. Genome-wide single marker association tests identified loci associated with tree size and shape, sex, and precocity. In the experimental orchard, we identified multiple trait-associated loci and a strong candidate for ZZ/ZW sex chromosomes. We found significant marker associations unique to different traits and to early vs late phenotypic measures of the same trait. We detected 2 loci strongly associated with rootstock size in commercial orchards. Pseudo-testcross classification of markers demonstrated that the trait-associated alleles for each locus were segregating in the gametes of opposite parents. These 2 loci interact epistatically to generate the bimodal distribution of tree size with undesirable small trees observed by growers. We identified candidate genes within these regions. These findings provide a foundational resource for marker development and genetic selection of vigorous pistachio UCB-1 rootstock.


Assuntos
Pistacia , Pistacia/genética , Melhoramento Vegetal , Fenótipo , Genótipo
3.
Genome Biol ; 22(1): 115, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883006

RESUMO

Our assembly-free linkage analysis pipeline (AFLAP) identifies segregating markers as k-mers in the raw reads without using a reference genome assembly for calling variants and provides genotype tables for the construction of unbiased, high-density genetic maps without a genome assembly. AFLAP is validated and contrasted to a conventional workflow using simulated data. AFLAP is applied to whole genome sequencing and genotype-by-sequencing data of F1, F2, and recombinant inbred populations of two different plant species, producing genetic maps that are concordant with genome assemblies. The AFLAP-based genetic map for Bremia lactucae enables the production of a chromosome-scale genome assembly.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Biologia Computacional/métodos , Ligação Genética , Genômica/métodos , Arabidopsis/genética , Mapeamento Cromossômico , Genoma de Planta , Sequenciamento do Exoma
4.
Cell Host Microbe ; 28(4): 558-571.e6, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32810441

RESUMO

Autophagy is a central part of immunity and hence is a key target of pathogens. However, the precise molecular mechanisms by which plant pathogens manipulate autophagy remain elusive. We identify a network of 88 interactions between 184 effectors from bacterial, fungal, oomycete, and nematode pathogens with 25 Arabidopsis autophagy (ATG) proteins. Notably, Pseudomonas syringae pv tomato (Pto) bacterial effectors HrpZ1, HopF3, and AvrPtoB employ distinct molecular strategies to modulate autophagy. Calcium-dependent HrpZ1 oligomerization targets ATG4b-mediated cleavage of ATG8 to enhance autophagy, while HopF3 also targets ATG8 but suppresses autophagy, with both effectors promoting infection. AvrPtoB affects ATG1 kinase phosphorylation and enhances bacterial virulence. Since pathogens inject limited numbers of effectors into hosts, our findings establish autophagy as a key target during infection. Additionally, as autophagy is enhanced and inhibited by these effectors, autophagy likely has different functions throughout infection and, thus, must be temporally and precisely regulated for successful infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Virulência
5.
Nat Commun ; 10(1): 2645, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201315

RESUMO

Lettuce downy mildew caused by Bremia lactucae is the most important disease of lettuce globally. This oomycete is highly variable and rapidly overcomes resistance genes and fungicides. The use of multiple read types results in a high-quality, near-chromosome-scale, consensus assembly. Flow cytometry plus resequencing of 30 field isolates, 37 sexual offspring, and 19 asexual derivatives from single multinucleate sporangia demonstrates a high incidence of heterokaryosis in B. lactucae. Heterokaryosis has phenotypic consequences on fitness that may include an increased sporulation rate and qualitative differences in virulence. Therefore, selection should be considered as acting on a population of nuclei within coenocytic mycelia. This provides evolutionary flexibility to the pathogen enabling rapid adaptation to different repertoires of host resistance genes and other challenges. The advantages of asexual persistence of heterokaryons may have been one of the drivers of selection that resulted in the loss of uninucleate zoospores in multiple downy mildews.


Assuntos
Núcleo Celular/genética , Interações Hospedeiro-Patógeno/genética , Lactuca/microbiologia , Oomicetos/genética , Doenças das Plantas/microbiologia , Núcleo Celular/efeitos dos fármacos , Resistência à Doença/genética , Fungicidas Industriais/farmacologia , Genômica , Lactuca/genética , Oomicetos/citologia , Oomicetos/patogenicidade , Seleção Genética/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Virulência/genética
6.
PLoS Biol ; 16(12): e2005821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540748

RESUMO

The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.


Assuntos
Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas de Plantas/genética , Genoma de Planta/genética , Genoma de Planta/imunologia , Imunidade Inata , Lactuca/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Plantas/genética , Plantas/imunologia , Domínios Proteicos/genética , Análise de Sequência de Proteína , Transdução de Sinais
7.
Cell Rep ; 13(8): 1670-82, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26586425

RESUMO

Modifications of plant immune complexes by secreted pathogen effectors can trigger strong immune responses mediated by the action of nucleotide binding-leucine-rich repeat immune receptors. Although some strains of the pathogen Pseudomonas syringae harbor effectors that individually can trigger immunity, the plant's response may be suppressed by other virulence factors. This work reveals a robust strategy for immune suppression mediated by HopZ3, an effector in the YopJ family of acetyltransferases. The suppressing HopZ3 effector binds to and can acetylate multiple members of the RPM1 immune complex, as well as two P. syringae effectors that together activate the RPM1 complex. These acetylations modify serine, threonine, lysine, and/or histidine residues in the targets. Through HopZ3-mediated acetylation, it is possible that the whole effector-immune complex is inactivated, leading to increased growth of the pathogen.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Acetilação , Acetiltransferases/imunologia , Acetiltransferases/metabolismo , Aminoácidos/imunologia , Aminoácidos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia , Fatores de Virulência/imunologia
8.
Plant Physiol ; 162(3): 1459-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735504

RESUMO

Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Motivos de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sítios de Ligação , Morte Celular , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Proteínas de Repetições Ricas em Leucina , Fenótipo , Fosfoglicerato Desidrogenase/metabolismo , Filogenia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Proteínas/metabolismo , Receptores de Interleucina/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/citologia , Nicotiana/genética
9.
Mol Plant Pathol ; 10(6): 837-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19849789

RESUMO

To study the role of type III-secreted effectors in the host adaptation of the tobacco (Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci, a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean (Phaseolus vulgaris) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1(Pph1448A) were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species.


Assuntos
Proteínas de Bactérias/fisiologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fabaceae/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Filogenia , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , Nicotiana/microbiologia
10.
Plant Physiol ; 150(4): 1733-49, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19571308

RESUMO

Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.


Assuntos
Proteínas de Bactérias/metabolismo , Produtos Agrícolas/microbiologia , Interações Hospedeiro-Patógeno , Pseudomonas/fisiologia , Ralstonia/fisiologia , Proteínas de Bactérias/genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Genes de Plantas , Lactuca/genética , Lactuca/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Necrose , Fenótipo , Polimorfismo Genético , Pseudomonas/patogenicidade , Ralstonia/patogenicidade , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...