Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e11699, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041011

RESUMO

Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.

2.
PLoS One ; 15(10): e0240996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091062

RESUMO

Biological invasions impact both agricultural and natural systems. The damage can be quantified in terms of both economic loss and reduction of biodiversity. Although the literature is quite rich about the impact of invasive species on plant and animal communities, their impact on environmental microbiomes is underexplored. Here, we re-analyze publicly available data using a common framework to create a global synthesis of the effects of biological invasions on environmental microbial communities. Our findings suggest that non-native species are responsible for the loss of microbial diversity and shifts in the structure of microbial populations. Therefore, the impact of biological invasions on native ecosystems might be more pervasive than previously thought, influencing both macro- and micro-biomes. We also identified gaps in the literature which encourage research on a wider variety of environments and invaders, and the influence of invaders across seasons and geographical ranges.


Assuntos
Microbiota/fisiologia , Animais , Biodiversidade , Ecossistema , Geografia , Espécies Introduzidas
3.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860060

RESUMO

Koinobiont parasitoids regulate the physiology of their hosts, possibly interfering with the host gut microbiota and ultimately impacting parasitoid development. We used the parasitoid Cotesia flavipes to investigate if the regulation of the host would also affect the host gut microbiota. We also wondered if the effects of parasitization on the gut microbiota would depend on the host-parasitoid association by testing the permissive Diatraea saccharalis and the non-permissive Spodoptera frugiperda hosts. We determined the structure and potential functional contribution of the gut microbiota of the fore-midgut and hindgut of the hosts at different stages of development of the immature parasitoid. The abundance and diversity of operational taxonomic units of the anteromedial (fore-midgut) gut and posterior (hindgut) region from larvae of the analyzed hosts were affected by parasitization. Changes in the gut microbiota induced by parasitization altered the potential functional contribution of the gut microbiota associated with both hosts. Our data also indicated that the mechanism by which C. flavipes interferes with the gut microbiota of the host does not require a host-parasitoid coevolutionary history. Changes observed in the potential contribution of the gut microbiota of parasitized hosts impact the host's nutritional quality, and could favor host exploitation by C. flavipes.


Assuntos
Microbioma Gastrointestinal , Mariposas/microbiologia , Mariposas/parasitologia , Vespas/fisiologia , Animais , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Parasita/fisiologia , Larva/classificação , Larva/microbiologia , Larva/parasitologia , Mariposas/classificação , Mariposas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...