Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 17(1): 209, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098948

RESUMO

BACKGROUND: Extreme panting under heat stress threatens dairy cattle milk production. Previous research has revealed that the gas exchange-mediated respiratory drive in critically ill dairy cattle with low O2 saturation induces panting. Vascular endothelial growth factor (VEGF) signaling may play important roles in immunosuppression and oxidative stress during severe respiratory stress responses in heat-stressed cattle. The objectives of this study were to transcriptomically analyze mRNA expression mediating heat-induced respiratory stress-associated panting, evaluate gas exchange, screen hub genes, and verify the expression of proteins encoded by differentially expressed genes in lymphocyte pathways. RESULTS: Jersey cattle were naturally heat-exposed. Physiological data were collected for response evaluation, and blood was collected for gas exchange and gene expression assays at 06:00, 10:00 and 14:00 continuously for 1 week. Lymphocytes were isolated from whole-blood samples for mRNA-seq and expression analysis of key pathway genes/proteins. The cattle respiration rates differed with time, averaging 51 bpm at 06:00, 76 bpm at 10:00, and 121 bpm at 14:00 (p < 0.05). Gas exchange analysis showed that both pH and pCO2 differed with time: they were 7.41 and 41 mmHg at 06:00, 7.45 and 37.5 mmHg at 10:00, and 7.49 and 33 mmHg at 14:00, respectively (p < 0.01). Sixteen heat-related differentially expressed genes (DEGs; 13 upregulated and 3 downregulated) were screened between 212 DEGs and 1370 heat stress-affected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) hub gene functional analysis annotated eleven genes to signal transduction, six genes to the immune response, and five genes to the endocrine response, including both prostaglandin-endoperoxide synthase 2 (PTGS2) and VEGF. Gene Ontology (GO) functional enrichment analysis revealed that oxygen regulation was associated with the phosphorus metabolic process, response to oxygen levels, response to decreased oxygen levels, response to hypoxia and cytokine activity terms. The main signaling pathways were the VEGF, hypoxia inducible factor-1(HIF-1), cytokine-cytokine receptor interaction and TNF pathways. Four genes involved Integrin beta 3 (ITBG3), PTGS2, VEGF, and myosin light chain 9 (MYL9) among the 16 genes related to immunosuppression, oxidative stress, and endocrine dysfunction were identified as participants in the VEGF signaling pathway and oxygenation. CONCLUSION: These findings help elucidate the underlying immune and oxygen regulation mechanisms associated with the VEGF signaling pathway in heat-stressed dairy cattle.


Assuntos
Doenças dos Bovinos/metabolismo , Transtornos de Estresse por Calor/veterinária , Linfócitos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Doenças dos Bovinos/etiologia , Doenças dos Bovinos/imunologia , Meio Ambiente , Regulação da Expressão Gênica , Transtornos de Estresse por Calor/imunologia , Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico , Hipóxia/imunologia , Hipóxia/metabolismo , Hipóxia/veterinária , Tolerância Imunológica/genética , Linfócitos/imunologia , Anotação de Sequência Molecular , Estresse Oxidativo , Troca Gasosa Pulmonar , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcriptoma
2.
J Allergy Clin Immunol ; 145(1): 301-311.e4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437490

RESUMO

BACKGROUND: Type I hypersensitivity is mediated by allergen-specific IgE, which sensitizes the high-affinity IgE receptor FcεRI on mast cells and basophils and drives allergic inflammation upon secondary allergen contact. CD23/FcεRII, the low-affinity receptor for IgE, is constitutively expressed on B cells and has been shown to regulate immune responses. Simultaneous binding of IgE to FcεRI and CD23 is blocked by reciprocal allosteric inhibition, suggesting that the 2 receptors exert distinct roles in IgE handling. OBJECTIVE: We aimed to study how free IgE versus precomplexed IgE-allergen immune complexes (IgE-ICs) target the 2 IgE receptors FcεRI and CD23, and we investigated the functional implications of the 2 pathways. METHODS: We performed binding and activation assays with human cells in vitro and IgE pharmacokinetics and anaphylaxis experiments in vivo. RESULTS: We demonstrate that FcεRI preferentially binds free IgE and CD23 preferentially binds IgE-ICs. We further show that those different binding properties directly translate to distinct biological functions: free IgE initiated allergic inflammation through FcεRI on allergic effector cells, while IgE-ICs were noninflammatory because of reduced FcεRI binding and enhanced CD23-dependent serum clearance. CONCLUSION: We propose that IgE-ICs are noninflammatory through reduced engagement by FcεRI but increased targeting of the CD23 pathway.


Assuntos
Alérgenos/imunologia , Anafilaxia/imunologia , Complexo Antígeno-Anticorpo/imunologia , Imunoglobulina E/imunologia , Lectinas Tipo C/imunologia , Receptores de IgE/imunologia , Transdução de Sinais/imunologia , Alérgenos/genética , Anafilaxia/genética , Anafilaxia/patologia , Animais , Complexo Antígeno-Anticorpo/genética , Humanos , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Receptores de IgE/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA