Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 619(7970): 500-505, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286609

RESUMO

Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2-5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8-13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16-18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.


Assuntos
Esporos Bacterianos , Água , Molhabilidade , Transporte Biológico , Fungos/química , Fungos/metabolismo , Microscopia de Força Atômica , Água/metabolismo , Plantas/química , Plantas/metabolismo , Bactérias/química , Bactérias/citologia , Bactérias/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Umidade , Elasticidade
2.
Nat Biotechnol ; 36(5): 387-390, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29734316
3.
Nat Commun ; 8(1): 617, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951541

RESUMO

About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...