Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0287356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733747

RESUMO

ATP-binding cassette (ABC) transporters actively transport various substances across membranes, while uridine diphosphate (UDP) glycosyltransferases (UGTs) are proteins that catalyse the chemical modification of various organic compounds. Both of these protein superfamilies have been associated with conferring herbicide resistance in weeds. Little is known about the evolutionary history of these protein families in the Archaeplastida. To infer the evolutionary histories of these protein superfamilies, we compared protein sequences collected from 10 species which represent distinct lineages of the Archaeplastida-the lineage including glaucophyte algae, rhodophyte algae, chlorophyte algae and the streptophytes-and generated phylogenetic trees. We show that ABC transporters were present in the last common ancestor of the Archaeplastida which lived 1.6 billion years ago, and the major clades identified in extant plants were already present then. Conversely, we only identified UGTs in members of the streptophyte lineage, which suggests a loss of these proteins in earlier diverging Archaeplastida lineages or arrival of UGTs into a common ancestor of the streptophyte lineage through horizontal gene transfer from a non-Archaeplastida eukaryote lineage. We found that within the streptophyte lineage, most diversification of the UGT protein family occurred in the vascular lineage, with 17 of the 20 clades identified in extant plants present only in vascular plants. Based on our findings, we conclude that ABC transporters and UGTs are ancient protein families which diversified during Archaeplastida evolution, which may have evolved for developmental functions as plants began to occupy new environmental niches and are now being selected to confer resistance to a diverse range of herbicides in weeds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Glicosiltransferases , Glicosiltransferases/genética , Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Herbicidas/genética , Filogenia , Sequência de Aminoácidos , Plantas Daninhas
2.
Pestic Biochem Physiol ; 191: 105370, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963939

RESUMO

A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.


Assuntos
Acetolactato Sintase , Herbicidas , Marchantia , Herbicidas/toxicidade , Acetolactato Sintase/metabolismo , Marchantia/genética , Marchantia/metabolismo , Transcriptoma , Resistência a Herbicidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...