Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34577213

RESUMO

Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.


Assuntos
Técnicas Biossensoriais , Telefone Celular , Medições Luminescentes , Aprendizado de Máquina , Fenóis
2.
Sensors (Basel) ; 20(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979213

RESUMO

Understanding relationships among multimodal data extracted from a smartphone-based electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care diagnostic devices. In this work, artificial intelligence (AI) algorithms such as random forest (RF) and feedforward neural network (FNN) are used to quantitatively investigate the relationships between the concentration of Ru(bpy)32+ luminophore and its experimentally measured ECL and electrochemical data. A smartphone-based ECL sensor with Ru(bpy)32+/TPrA was developed using disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN algorithms, which allowed the prediction of Ru(bpy)32+ concentration using multiple key features. High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values was achieved in the detection range between 0.02 µM and 2.5 µM. The AI approaches using RF and FNN were capable of directly inferring the concentration of Ru(bpy)32+ using easily observable key features. The results demonstrate that data-driven AI algorithms are effective in analyzing the multimodal ECL sensor data. Therefore, these AI algorithms can be an essential part of the modeling arsenal with successful application in ECL sensor data modeling.

3.
Appl Biochem Biotechnol ; 148(1-3): 163-73, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18418749

RESUMO

In this work, a systematic method to support the building of bioprocess models through the use of different optimization techniques is presented. The method was applied to a tower bioreactor for bioethanol production with immobilized cells of Saccharomyces cerevisiae. Specifically, a step-by-step procedure to the estimation problem is proposed. As the first step, the potential of global searching of real-coded genetic algorithm (RGA) was applied for simultaneous estimation of the parameters. Subsequently, the most significant parameters were identified using the Placket-Burman (PB) design. Finally, the quasi-Newton algorithm (QN) was used for optimization of the most significant parameters, near the global optimum region, as the initial values were already determined by the RGA global-searching algorithm. The results have shown that the performance of the estimation procedure applied in a deterministic detailed model to describe the experimental data is improved using the proposed method (RGA-PB-QN) in comparison with a model whose parameters were only optimized by RGA.


Assuntos
Algoritmos , Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Etanol/metabolismo , Modelos Biológicos , Pectinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Simulação por Computador , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...