Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38818304

RESUMO

Background and purpose: Motion management techniques are important to spare the healthy tissue adequately. However, they are complex and need dedicated quality assurance. The aim of this study was to create a dynamic phantom designed for quality assurance and to replicate a patient's size, anatomy, and tissue density. Materials and methods: A computed tomography (CT) scan of a cancer patient was used to create molds for the lungs, heart, ribs, and vertebral column via additive manufacturing. A pump system and software were developed to simulate respiratory dynamics. The extent of respiratory motion was quantified using a 4DCT scan. End-to-end tests were conducted to evaluate two motion management techniques for lung stereotactic body radiotherapy (SBRT). Results: The chest wall moved between 4 mm and 13 mm anteriorly and 2 mm to 7 mm laterally during the breathing. The diaphragm exhibited superior-inferior movement ranging from 5 mm to 16 mm in the left lung and 10 mm to 36 mm in the right lung. The left lung tumor displaced ± 7 mm superior-inferiorly and anterior-posteriorly. The CT numbers were for lung: -716 ± 108 HU (phantom) and -713 ± 70 HU (patient); bone: 460 ± 20 HU (phantom) and 458 ± 206 HU (patient); soft tissue: 92 ± 9 HU (phantom) and 60 ± 25 HU (patient). The end-to-end testing showed an excellent agreement between the measured and the calculated dose for ion chamber and film dosimetry. Conclusions: The phantom is recommended for quality assurance, evaluating the institution's specific planning and motion management strategies either through end-to-end testing or as an external audit phantom.

3.
Phys Imaging Radiat Oncol ; 28: 100499, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869475

RESUMO

Background and purpose: Stereotactic body radiotherapy (SBRT) has emerged as a promising treatment for patients with ventricular tachycardia (VT) who do not respond to standard treatments. However, the management of respiratory motion during treatment remains a challenge. This study aimed to investigate the effect of abdominal compression (AC) on respiratory induced motion in the heart. Materials and methods: A patient cohort of 18 lung cancer patients was utilized, where two four-dimensional computed tomography (4DCT) scans were performed for each patient, one with and one without AC. The patient setup consisted of an AC plate together with a stereotactic body frame. The left coronary artery, the left anterior descending artery, the lateral wall of the left ventricle, the heart apex, the carina, and the right and left diaphragm were delineated in max expiration and max inspiration phases in both 4DCT scans. The center of mass shift from expiration to inspiration phase was determined to assess the AC's impact on respiratory motion. Results: A significant reduction in motion in the superior-inferior direction was found for all heart structures when AC was used. The median respiratory motion of the heart structures decreased by approximately 1-3 mm with AC in the superior-inferior direction, and approximately 60% of the patients had a motion reduction ≥3 mm in the left ventricle wall. Conclusion: These findings suggest that AC has the potential to improve the motion management of SBRT for VT patients, by reducing the respiratory induced motion in the heart.

5.
Med Phys ; 50(7): 4047-4054, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37190907

RESUMO

BACKGROUND: During recent years FLASH radiotherapy (FLASH-RT) has shown promising results in radiation oncology, with the potential to spare normal tissue while maintaining the antitumor effects. The high speed of the FLASH-RT delivery increases the need for fast and precise motion monitoring to avoid underdosing the target. Surface guided radiotherapy (SGRT) uses surface imaging (SI) to render a 3D surface of the patient. SI provides real-time motion monitoring and has a large scanning field of view, covering off-isocentric positions. However, SI has so far only been used for human patients with conventional setup and treatment. PURPOSE: The aim of this study was to investigate the performance of SI as a motion management tool during electron FLASH-RT of canine cancer patients. METHODS: To evaluate the SI system's ability to render surfaces of fur, three fur-like blankets in white, grey, and black were used to imitate the surface of canine patients and the camera settings were optimized for each blanket. Phantom measurements using the fur blankets were carried out, simulating respiratory motion and sudden shift. Respiratory motion was simulated using the QUASAR Respiratory Motion Phantom with the fur blankets placed on the phantom platform, which moved 10 mm vertically with a simulated respiratory period of 4 s. Sudden motion was simulated with an in-house developed phantom, consisting of a platform which was moved vertically in a stepwise motion at a chosen frequency. For sudden measurements, 1, 2, 3, 4, 5, 6, 7, and 10 Hz were measured. All measurements were both carried out at the conventional source-to-surface distance (SSD) of 100 cm, and in the locally used FLASH-RT setup at SSD = 70 cm. The capability of the SI system to reproduce the simulated motion and the sampling time were evaluated. As an initial step towards clinical implementation, the feasibility of SI for surface guided FLASH-RT was evaluated for 11 canine cancer patients. RESULTS: The SI camera was capable of rendering surfaces for all blankets. The deviation between simulated and measured mean peak-to-peak breathing amplitude was within 0.6 mm for all blankets. The sampling time was generally higher for the black fur than for the white and grey fur, for the measurement of both respiratory and sudden motion. The SI system could measure sudden motion within 62.5 ms and detect motion with a frequency of 10 Hz. The feasibility study of the canine patients showed that the SI system could be an important tool to ensure patient safety. By using this system we could ensure and document that 10 out of 11 canine patients had a total vector offset from the reference setup position <2 mm immediately before and after irradiation. CONCLUSIONS: We have shown that SI can be used for surface guided FLASH-RT of canine patients. The SI system is currently not fast enough to interrupt a FLASH-RT beam while irradiating but with the short sampling time sudden motion can be detected. The beam can therefore be held just prior to irradiation, preventing treatment errors such as underdosing the target.


Assuntos
Elétrons , Neoplasias , Humanos , Animais , Cães , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/veterinária , Diagnóstico por Imagem , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-36798947

RESUMO

Purpose: To investigate the possibility to be able to offer left sided breast cancer patients, not suitable for DIBH, an organ at risk saving treatment. Materials and Methods: Twenty patients receiving radiotherapy for left breast cancer in DIBH were enrolled in the study. Planning CT scans were acquired in the same supine treatment position in FB and DIBH. 3DCRT_DIBH plans were designed and optimized using two parallel opposed tangent beams (with some additional segments) for the breast and chest wall and anterior-posterior fields for regional lymph nodes irradiation. Additionally, FB helical tomotherapy plans were optimized to minimize heart and lung dose. All forty plans were optimized with at least 95% of the total CTV covered by the 95% of prescribed dose of 50 Gy in 25 fractions. Results: HT_FB plans showed significantly better dose homogeneity and conformity compared to the 3DCRT_DIBH specially for regional nodal irradiation. The heart mean dose was almost comparable in 3DCRT_DIBH and HT_FB while the volume (%) of the heart receiving 25 Gy had a statistically significant reduction from 7.90 ± 3.33 in 3DCRT_DIBH to 0.88 ± 0.66 in HT_FB. HT_FB was also more effective in left descending artery (LAD) mean dose reduction about 100% from 30.83 ± 9.2 Gy to 9.7 ± 3.1. The ipsilateral lung volume receiving 20 Gy has a further reduction of 43 % in HT_FB compared with 3DCRT_DIBH. For low dose comparison, 3DCRT_DIBH was superior for contralateral organ sparing compared to the HT_FB due to the limited angle for dose delivery. Conclusion: For patients who cannot be a candidate for DIBH for any reason, HT in free breathing may be a good alternative and provides heart and ipsilateral lung dose sparing, however with the cost of increased dose to contralateral breast and lung.

7.
Rep Pract Oncol Radiother ; 27(5): 881-896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523810

RESUMO

Background: The aim of the study is to evaluate the overall accuracy of the surface-guided radiotherapy (SGRT) workflow through a comprehensive commissioning and quality assurance procedures and assess the potential benefits of deep-inspiration breath-hold (DIBH) radiotherapy as a cardiac and lung dose reduction approach for left-sided breast cancer irradiation. Materials and methods: Accuracy and reproducibility of the optical surface scanner used for DIBH treatment were evaluated using different phantoms. Patient positioning accuracy and reproducibility of DIBH treatment were evaluated. Twenty patients were studied for treatment plan quality in target dose coverage and healthy organ sparing for the two different treatment techniques. Results: Reproducibility tests for the surface scanner showed good stability within 1 mm in all directions. The maximum position variation between applied shifts on the couch and the scanner measured offsets is 1 mm in all directions. The clinical study of 200 fractions showed good agreement between the surface scanner and portal imaging with the isocenter position deviation of less than 3 mm in each lateral, longitudinal, and vertical direction. The standard deviation of the DIBH level showed a value of < 2 mm during all evaluated DIBHs. Compared to the free breathing (FB) technique, DIBH showed significant reduction of 48% for heart mean dose, 43% for heart V25, and 20% for ipsilateral lung V20. Conclusion: Surface-guided radiotherapy can be regarded as an accurate tool for patient positioning and monitoring in breast radiotherapy. DIBH treatment are considered to be effective techniques in heart and ipsilateral lung dose reductions for left breast radiotherapy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34527818

RESUMO

INTRODUCTION: The aim of this study was to evaluate if surface guided radiotherapy (SGRT) can decrease patient positioning time for localized prostate cancer patients compared to the conventional 3-point localization setup method. The patient setup accuracy was also compared between the two setup methods. MATERIALS AND METHODS: A total of 40 localized prostate cancer patients were enrolled in this study, where 20 patients were positioned with surface imaging (SI) and 20 patients were positioned with 3-point localization. The setup time was obtained from the system log files of the linear accelerator and compared between the two methods. The patient setup was verified with daily orthogonal kV images which were matched based on the implanted gold fiducial markers. Resulting setup deviations between planned and online positions were compared between SI and 3-point localization. RESULTS: Median setup time was 2:50 min and 3:28 min for SI and 3-point localization, respectively (p < 0.001). The median vector offset was 4.7 mm (range: 0-10.4 mm) for SI and 5.2 mm for 3-point localization (range: 0.41-17.3 mm) (p = 0.01). Median setup deviation in the individual translations for SI and 3-point localization respectively was: 1.1 mm and 1.9 mm in lateral direction (p = 0.02), 1.8 and 1.6 mm in the longitudinal direction (p = 0.41) and 2.2 mm and 2.6 mm in the vertical direction (p = 0.04). CONCLUSIONS: Using SGRT for positioning of prostate cancer patients provided a faster and more accurate patient positioning compared to the conventional 3-point localization setup.

9.
Radiat Oncol ; 16(1): 150, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399806

RESUMO

BACKGROUND AND PURPOSE: Inter-modality image registration between computed tomography (CT) and magnetic resonance (MR) images is associated with systematic uncertainties and the magnitude of these uncertainties is not well documented. The purpose of this study was to investigate the potential uncertainty of gold fiducial marker (GFM) registration for localized prostate cancer and to estimate the inter-observer bias in a clinical setting. METHODS: Four experienced observers registered CT and MR images for 42 prostate cancer patients. Manual GFM identification was followed by a landmark-based registration. The absolute difference between observers in GFM identification and the displacement of the clinical target volume (CTV) was investigated. The CTV center of mass (CoM) vector displacements, DICE-index and Hausdorff distances for the observer registrations were compared against a clinical baseline registration. The time allocated for the manual registrations was compared. RESULTS: Absolute difference in GFM identification between observers ranged from 0.0 to 3.0 mm. The maximum CTV CoM displacement from the clinical baseline was 3.1 mm. Displacements larger than or equal to 1 mm, 2 mm and 3 mm were 46%, 18% and 4%, respectively. No statistically significant difference was detected between observers in terms of CTV displacement. Median DICE-index and Hausdorff distance for the CTV, with their respective ranges were 0.94 [0.70-1.00] and 2.5 mm [0.7-8.7]. CONCLUSIONS: Registration of CT and MR images using GFMs for localized prostate cancer patients was subject to inter-observer bias on an individual patient level. A CTV displacement as large as 3 mm occurred for individual patients. These results show that GFM registration in a clinical setting is associated with uncertainties, which motivates the removal of inter-modality registrations in the radiotherapy workflow and a transition to an MRI-only workflow for localized prostate cancer.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética/métodos , Variações Dependentes do Observador , Neoplasias da Próstata/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Fluxo de Trabalho
10.
Med Phys ; 47(12): 6310-6318, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034065

RESUMO

PURPOSE: The use of optical surface systems (OSSs) for patient setup verification in external radiation therapy is increasing. To manage potential deformations in a patient's anatomy, a novel deformable image registration (DIR) tool has been applied in a commercial OSS. In this study we investigate the accuracy of the DIR as compared to rigid image registration (RR). METHODS AND MATERIALS: The positioning accuracy of the DIR and RR implemented in the OSS was investigated using an ad hoc-developed anthropomorphic deformable phantom, named Mary. The phantom consists of 33 slices of expanded polystyrene slabs shaped thus to simulate part of a female body. Anatomical details, simulating the ribs and spinal cord, together with 10 inner targets at different depths are included in thorax and abdominal parts. Mary is capable of realistic body movements and deformations, such as head and arm rotations, body torsion and moderate breast/abdomen swelling. The accuracy of DIR and RR was investigated for four internal targets after deliberately deforming the phantom nine times. Breast and abdomen enlargements and torsions around x, y, and z axes were applied. For reference purposes, rigid displacements (where Mary's anatomy was kept intact) were included. The phantom was positioned on the linac couch under the OSS guidance and for each target and displacement a CBCT was acquired. The accuracy of DIR and RR was assessed evaluating the difference in means of absolute values between CBCT and the OSS registration parameters (lateral, longitudinal, vertical, rot, pitch, and roll), using both a reference surface extracted from CT (CTr) or acquired with the OSS (OSSr). A comparison of the four different combinations, DIR + OSSr, DIR + CTr, RR + OSSr, and RR + CTr, was carried out to evaluate the position accuracy for the various combinations. Finally, the positioning accuracy of the different target positions using only OSSr was investigated for the DIR. A paired sample Wilcoxon signed-rank test (P < 0.05) and a two-tailed Mann-Whitney test (P < 0.05) were carried out. RESULTS: The DIR in combination with OSSr showed significantly (P < 0.05) improved positioning accuracy in the lateral and longitudinal directions and in pitch, compared to RR, when deformations were applied to Mary. The positioning accuracy improved from 1.9 ± 1.5 mm, 1.1 ± 0.8 mm to 1.1 ± 1.2 mm, 0.6 ± 0.5 mm in lateral and longitudinal directions, respectively, and from 0.8 ± 0.6° to 0.4 ± 0.4° in pitch, using DIR compared to RR. Both the DIR and RR showed a similar positioning accuracy when rigid displacements of Mary were applied. For DIR, the OSSr generally showed improved calculation accuracy compared to CTr. Independent of the reference image used, the target position influenced the registration accuracy, and hence, one target could not be evaluated using RR due to its inability to calculate the correct position. CONCLUSIONS: Improved positioning accuracy was observed for DIR with respect to RR when deformations of Mary's anatomy were applied. For both DIR and RR, improved positioning accuracy was observed using OSSr as compared to CTr. The position of the target inside the phantom influenced the positioning accuracy for DIR.


Assuntos
Braquiterapia , Processamento de Imagem Assistida por Computador , Algoritmos , Mama , Feminino , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador
11.
Radiat Oncol ; 15(1): 168, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650811

RESUMO

BACKGROUND: The purpose was to evaluate the dosimetric effects in prostate cancer treatment caused by anatomical changes occurring during the time frame of adaptive replanning in a magnetic resonance linear accelerator (MR-linac) workflow. METHODS: Two MR images (MR1 and MR2) were acquired with 30 min apart for each of the 35 patients enrolled in this study. The clinical target volume (CTV) and organs at risk (OARs) were delineated based on MR1. Using a synthetic CT (sCT), ultra-hypofractionated VMAT treatment plans were created for MR1, with three different planning target volume (PTV) margins of 7 mm, 5 mm and 3 mm. The three treatment plans of MR1, were recalculated onto MR2 using its corresponding sCT. The dose distribution of MR2 represented delivered dose to the patient after 30 min of adaptive replanning, omitting motion correction before beam on. MR2 was registered to MR1, using deformable registration. Using the inverse deformation, the structures of MR1 was deformed to fit MR2 and anatomical changes were quantified. For dose distribution comparison the dose distribution of MR2 was warped to the geometry MR1. RESULTS: The mean center of mass vector offset for the CTV was 1.92 mm [0.13 - 9.79 mm]. Bladder volume increase ranged from 12.4 to 133.0% and rectum volume difference varied between -10.9 and 38.8%. Using the conventional 7 mm planning target volume (PTV) margin the dose reduction to the CTV was 1.1%. Corresponding values for 5 mm and 3 mm PTV margin were 2.0% and 4.2% respectively. The dose to the PTV and OARs also decreased from D1 to D2, for all PTV margins evaluated. Statistically significant difference was found for CTV Dmin between D1 and D2 for the 3 mm PTV margin (p < 0.01). CONCLUSIONS: A target underdosage caused by anatomical changes occurring during the reported time frame for adaptive replanning MR-linac workflows was found. Volume changes in both bladder and rectum caused large prostate displacements. This indicates the importance of thorough position verification before treatment delivery and that the workflow needs to speed up before introducing margin reduction.


Assuntos
Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Fluxo de Trabalho
12.
J Appl Clin Med Phys ; 21(8): 139-148, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592288

RESUMO

PURPOSE: In this study, we have quantified the setup deviation and time gain when using fast surface scanning for daily setup/positioning with weekly megavoltage computed tomography (MVCT) and compared it to daily MVCT. METHODS: A total of 16 835 treatment fractions were analyzed, treated, and positioned using our TomoTherapy HD (Accuray Inc., Madison, USA) installed with a Sentinel optical surface scanning system (C-RAD Positioning AB, Uppsala, Sweden). Patients were positioned using in-room lasers, surface scanning and MVCT for the first three fractions. For the remaining fractions, in-room laser was used for setup followed by daily surface scanning with MVCT once weekly. The three-dimensional (3D) setup correction for surface scanning was evaluated from the registration between MVCT and the planning CT. The setup correction vector for the in-room lasers was assessed from the surface scanning and the MVCT to planning CT registration. The imaging time was evaluated as the time from imaging start to beam-on. RESULTS: We analyzed 894 TomoTherapy treatment plans from 2012 to 2018. Of all the treatment fractions performed with surface scanning, 90 % of the residual errors were within 2.3 mm for CNS (N = 284), 2.9 mm for H&N (N = 254), 8.7 mm for thorax (N = 144) and 10.9 for abdomen (N = 134) patients. The difference in residual error between surface scanning and positioning with in-room lasers was significant (P < 0.005) for all sites. The imaging time was assessed as total imaging time per treatment plan, modality, and treatment site and found that surface scanning significantly reduced patient on-couch time compared to MVCT for all treatment sites (P < 0.005). CONCLUSIONS: The results indicate that daily surface scanning with weekly MVCT can be used with the current target margins for H&N, CNS, and thorax, with reduced imaging time.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Suécia
13.
Radiat Oncol ; 15(1): 77, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272943

RESUMO

BACKGROUND: Retrospective studies on MRI-only radiotherapy have been presented. Widespread clinical implementations of MRI-only workflows are however limited by the absence of guidelines. The MR-PROTECT trial presents an MRI-only radiotherapy workflow for prostate cancer using a new single sequence strategy. The workflow incorporated the commercial synthetic CT (sCT) generation software MriPlanner™ (Spectronic Medical, Helsingborg, Sweden). Feasibility of the workflow and limits for acceptance criteria were investigated for the suggested workflow with the aim to facilitate future clinical implementations. METHODS: An MRI-only workflow including imaging, post imaging tasks, treatment plan creation, quality assurance and treatment delivery was created with questionnaires. All tasks were performed in a single MR-sequence geometry, eliminating image registrations. Prospective CT-quality assurance (QA) was performed prior treatment comparing the PTV mean dose between sCT and CT dose-distributions. Retrospective analysis of the MRI-only gold fiducial marker (GFM) identification, DVH- analysis, gamma evaluation and patient set-up verification using GFMs and cone beam CT were performed. RESULTS: An MRI-only treatment was delivered to 39 out of 40 patients. The excluded patient was too large for the predefined imaging field-of-view. All tasks could successfully be performed for the treated patients. There was a maximum deviation of 1.2% in PTV mean dose was seen in the prospective CT-QA. Retrospective analysis showed a maximum deviation below 2% in the DVH-analysis after correction for rectal gas and gamma pass-rates above 98%. MRI-only patient set-up deviation was below 2 mm for all but one investigated case and a maximum of 2.2 mm deviation in the GFM-identification compared to CT. CONCLUSIONS: The MR-PROTECT trial shows the feasibility of an MRI-only prostate radiotherapy workflow. A major advantage with the presented workflow is the incorporation of a sCT-generation method with multi-vendor capability. The presented single sequence approach are easily adapted by other clinics and the general implementation procedure can be replicated. The dose deviation and the gamma pass-rate acceptance criteria earlier suggested was achievable, and these limits can thereby be confirmed. GFM-identification acceptance criteria are depending on the choice of identification method and slice thickness. Patient positioning strategies needs further investigations to establish acceptance criteria.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias da Próstata/patologia , Garantia da Qualidade dos Cuidados de Saúde , Estudos Retrospectivos , Software , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
14.
J Appl Clin Med Phys ; 20(9): 61-68, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31478615

RESUMO

PURPOSE: The purpose of the study was to investigate if surface guided radiotherapy (SGRT) can decrease setup deviations for tangential and locoregional breast cancer patients compared to conventional laser-based setup (LBS). MATERIALS AND METHODS: Both tangential (63 patients) and locoregional (76 patients) breast cancer patients were enrolled in this study. For LBS, the patients were positioned by aligning skin markers to the room lasers. For the surface based setup (SBS), an optical surface scanning system was used for daily setup using both single and three camera systems. To compare the two setup methods, the patient position was evaluated using verification imaging (field images or orthogonal images). RESULTS: For both tangential and locoregional treatments, SBS decreased the setup deviation significantly compared to LBS (P < 0.01). For patients receiving tangential treatment, 95% of the treatment sessions were within the clinical tolerance of ≤ 4 mm in any direction (lateral, longitudinal or vertical) using SBS, compared to 84% for LBS. Corresponding values for patients receiving locoregional treatment were 70% and 54% for SBS and LBS, respectively. No significant difference was observed comparing the setup result using a single camera system or a three camera system. CONCLUSIONS: Conventional laser-based setup can with advantage be replaced by surface based setup. Daily SGRT improves patient setup without additional imaging dose to breast cancer patients regardless if a single or three camera system was used.


Assuntos
Braquiterapia/normas , Neoplasias da Mama/radioterapia , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/normas , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia Guiada por Imagem/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
15.
Acta Oncol ; 58(1): 95-104, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30280626

RESUMO

BACKGROUND: Late effects induced by radiotherapy (RT) are of great concern for mediastinal Hodgkin's lymphoma (HL) patients and it is therefore important to reduce normal tissue dose. The aim of this study was to investigate the impact on the normal tissue dose and target coverage, using various combinations of intensity modulated proton therapy (IMPT), volumetric modulated arc therapy (VMAT) and 3-dimensional conformal RT (3D-CRT), planned in both deep inspiration breath hold (DIBH) and free breathing (FB). MATERIAL AND METHODS: Eighteen patients were enrolled in this study and planned with involved site RT. Two computed tomography images were acquired for each patient, one during DIBH and one during FB. Six treatment plans were created for each patient; 3D-CRT in FB, 3D-CRT in DIBH, VMAT in FB, VMAT in DIBH, IMPT in FB and IMPT in DIBH. Dosimetric impact on the heart, left anterior descending (LAD) coronary artery, lungs, female breasts, target coverage, and also conformity index and integral dose (ID), was compared between the different treatment techniques. RESULTS: The use of DIBH significantly reduced the lung dose for all three treatment techniques, however, no significant difference in the dose to the female breasts was observed. Regarding the heart and LAD doses, large individual variations were observed. For VMAT, the mean heart and LAD doses were significantly reduced using DIBH, but no significant difference was observed for 3D-CRT and IMPT. Both IMPT and VMAT resulted in improved target coverage and more conform dose distributions compared to 3D-CRT. IMPT generally showed the lowest organs at risk (OAR) doses and significantly reduced the ID compared to both 3D-CRT and VMAT. CONCLUSIONS: The majority of patients benefited from treatment in DIBH, however, the impact on the normal tissue dose was highly individual and therefore comparative treatment planning is encouraged. The lowest OAR doses were generally observed for IMPT in combination with DIBH.


Assuntos
Doença de Hodgkin/radioterapia , Neoplasias do Mediastino/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Adolescente , Adulto , Idoso , Suspensão da Respiração , Feminino , Humanos , Inalação , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Lesões por Radiação/prevenção & controle , Estudos Retrospectivos , Adulto Jovem
16.
Phys Med Biol ; 63(8): 085012, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29671410

RESUMO

The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.


Assuntos
Movimento (Física) , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Respiração
17.
J Appl Clin Med Phys ; 19(1): 25-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29139223

RESUMO

The aim of this study was to investigate potential dose reductions to the heart, left anterior descending coronary artery (LAD), and ipsilateral lung for left-sided breast cancer using visually guided deep inspiration breath-hold (DIBH) with the optical surface scanning system Catalyst™, and how these potential dosimetric benefits are affected by intrafractional motion in between breath holds. For both DIBH and free breathing (FB), treatment plans were created for 20 tangential and 20 locoregional left-sided breast cancer patients. During DIBH treatment, beam-on was triggered by a region of interest on the xiphoid process using a 3 mm gating window. Using a novel nonrigid algorithm, the Catalyst™ system allows for simultaneous real-time tracking of the isocenter position, which was used to calculate the intrafractional DIBH isocenter reproducibility. The 50% and 90% cumulative probabilities and maximum values of the intrafractional DIBH isocenter reproducibility were calculated and to obtain the dosimetric effect isocenter shifts corresponding to these values were performed in the treatment planning system. For both tangential and locoregional treatment, the dose to the heart, LAD and ipsilateral lung was significantly reduced for DIBH compared to FB. The intrafractional DIBH isocenter reproducibility was very good for the majority of the treatment sessions, with median values of approximately 1 mm in all three translational directions. However, for a few treatment sessions, intrafractional DIBH isocenter reproducibility of up to 5 mm was observed, which resulted in large dosimetric effects on the target volume and organs at risk. Hence, it is of importance to set tolerance levels on the intrafractional isocenter motion and not only perform DIBH based on the xiphoid process.


Assuntos
Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Suspensão da Respiração , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Respiração , Tomografia Computadorizada por Raios X/métodos
18.
Australas Phys Eng Sci Med ; 40(3): 717-727, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28523468

RESUMO

Recent developments in radiotherapy have focused on the management of patient motion during treatment. Studies have shown that significant gains in treatment quality can be made by 'gating' certain treatments, simultaneously keeping target coverage, and increasing separation to nearby organs at risk (OAR). Motion phantoms can be used to simulate patient breathing motion and provide the means to perform quality control (QC) and quality assurance (QA) of gating functionality as well as to assess the dosimetric impact of motion on individual patient treatments. The aim of this study was to design and build a motion phantom that accurately reproduces the breathing motion of patients to enable end-to-end gating system quality control of various gating systems as well as patient specific quality assurance. A motion phantom based on a stepper motor driver circuit was designed. The phantom can be programmed with both real patient data from an external gating system and with custom signals. The phantom was programmed and evaluated with patient data and with a square wave signal to be tracked with a Sentinel™ (C-Rad, Uppsala, Sweden) motion monitoring system. Results were compared to the original curves with respect to amplitude and phase. The comparison of patient curve data showed a mean error value of -0.09 mm with a standard deviation of 0.24 mm and a mean absolute error of 0.29 mm. The square wave signals could be reproduced with a mean error value of -0.03 mm, a standard deviation of 0.04 mm and a mean absolute error of 0.13 mm. Breathing curve data acquired from an optical scanning system can be reproduced accurately with the help of the in-house built motion phantom. The phantom can also be programmed to follow user designed curve data. This offers the potential for QC of gating systems and various dosimetric quality control applications.


Assuntos
Eletrônica/instrumentação , Movimento (Física) , Fenômenos Ópticos , Imagens de Fantasmas , Radioterapia/métodos , Humanos , Respiração , Software
19.
Radiat Oncol ; 10: 84, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25884950

RESUMO

BACKGROUND: The purpose of this study was to investigate the potential dose reduction to the heart, left anterior descending (LAD) coronary artery and the ipsilateral lung for patients treated with tangential and locoregional radiotherapy for left-sided breast cancer with enhanced inspiration gating (EIG) compared to free breathing (FB) using the AAA algorithm. The radiobiological implication of such dose sparing was also investigated. METHODS: Thirty-two patients, who received tangential or locoregional adjuvant radiotherapy with EIG for left-sided breast cancer, were retrospectively enrolled in this study. Each patient was CT-scanned during FB and EIG. Similar treatment plans, with comparable target coverage, were created in the two CT-sets using the AAA algorithm. Further, the probability of radiation induced cardiac mortality and pneumonitis were calculated using NTCP models. RESULTS: For tangential treatment, the median V25Gy for the heart and LAD was decreased for EIG from 2.2% to 0.2% and 40.2% to 0.1% (p < 0.001), respectively, whereas there was no significant difference in V20Gy for the ipsilateral lung (p = 0.109). For locoregional treatment, the median V25Gy for the heart and LAD was decreased for EIG from 3.3% to 0.2% and 51.4% to 5.1% (p < 0.001), respectively, and the median ipsilateral lung V20Gy decreased from 27.0% for FB to 21.5% (p = 0.020) for EIG. The median excess cardiac mortality probability decreased from 0.49% for FB to 0.02% for EIG (p < 0.001) for tangential treatment and from 0.75% to 0.02% (p < 0.001) for locoregional treatment. There was no significant difference in risk of radiation pneumonitis for tangential treatment (p = 0.179) whereas it decreased for locoregional treatment from 6.82% for FB to 3.17% for EIG (p = 0.004). CONCLUSIONS: In this study the AAA algorithm was used for dose calculation to the heart, LAD and left lung when comparing the EIG and FB techniques for tangential and locoregional radiotherapy of breast cancer patients. The results support the dose and NTCP reductions reported in previous studies where dose calculations were performed using the pencil beam algorithm.


Assuntos
Algoritmos , Inalação , Radioterapia Adjuvante/métodos , Respiração , Neoplasias Unilaterais da Mama/radioterapia , Adulto , Idoso , Artefatos , Terapia Combinada , Vasos Coronários/efeitos da radiação , Feminino , Coração/efeitos da radiação , Cardiopatias/etiologia , Cardiopatias/mortalidade , Cardiopatias/prevenção & controle , Humanos , Pulmão/efeitos da radiação , Mastectomia , Mastectomia Segmentar , Pessoa de Meia-Idade , Movimento (Física) , Órgãos em Risco , Probabilidade , Lesões por Radiação/prevenção & controle , Pneumonite por Radiação/prevenção & controle , Dosagem Radioterapêutica , Estudos Retrospectivos , Neoplasias Unilaterais da Mama/cirurgia
20.
Acta Oncol ; 54(2): 261-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25383452

RESUMO

BACKGROUND: For breathing adapted radiotherapy, the same motion monitoring system can be used for imaging and triggering of the accelerator. PURPOSE: To evaluate a new technique for prospective gated computed tomography (CT) and four-dimensional CT (4DCT) using a laser based surface scanning system (Sentinel(™), C-RAD, Uppsala, Sweden). The system was compared to the AZ-733V respiratory gating system (Anzai Medical, Tokyo, Japan) and the Real-Time Position Management System (RPM(™)) (Varian Medical Systems, Palo Alto, CA, USA). MATERIAL AND METHODS: Temporal accuracy was evaluated using a moving phantom programmed to move a platform along trajectories following a sin(6)(ωt) function with amplitudes from 6 to 20 mm and periods from 2 to 5 s during 120 s while the motion was recorded. The recorded data was Fourier transformed and the peak area at the fundamental and harmonic frequencies compared to data generated using the same sinusoidal function. For verification of the 4DCT reconstruction process, the phantom was programmed to move along a sinusoidal trajectory. Ten phase series were reconstructed. The distance from the couch to the platform was measured in each image. By fitting the function sin(ωt-ϕ) to the values measured in the images corresponding to each slice, the phase of each image was verified. RESULTS AND CONCLUSION: In the recorded data, the peak area at the fundamental frequency covered on average 104 ± 4%, 102 ± 4% and 91 ± 27% of the peak area in the generated data for the Sentinel(™), RPM(™) and AZ-733V systems, respectively. All systems managed to resolve both harmonic frequencies. The second experiment showed that all images were sorted into the correct series using breathing data recorded by each system. The systems generated very similar results, however, it is preferable to use the same system both for imaging and treatment.


Assuntos
Lasers , Movimento , Imagens de Fantasmas , Respiração , Técnicas de Imagem de Sincronização Respiratória/métodos , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento , Tomografia Computadorizada Quadridimensional/métodos , Análise de Fourier , Humanos , Imagem Óptica , Posicionamento do Paciente , Técnicas de Imagem de Sincronização Respiratória/instrumentação , Tórax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...