Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(9): 316, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558905

RESUMO

Italy is the leading producer of rice in Europe, but this crop is increasingly threatened by many factors such as pathogens' resistance, pollution and climate change. To date, few works keep in consideration the ecological role that the open irrigation system can play in the dispersion of important opportunistic species, and if it is affected by agricultural management and environmental seasonal changing. This work carried out the mycological characterization of a rice field irrigation system located in Vistarino (Pavia, Lombardy, Italy). Three main sections of an irrigation system (canal, ditch and paddy) were sampled during the summer 2018 (irrigation season of the rice crop). Water samples processing underlined how the irrigation system is rich of fungal diversity (59 species isolated). In order of abundance, the canal samples are characterized by the dominance of Aspergillus, Cladosporium, Fusarium and Trichoderma genera, while the ditch samples by Alternaria, Cladosporium, Fusarium, and Penicillium genera, and the paddy samples by Alternaria, Cladosporium, Fusarium and Trichoderma genera. Results showed that the three environments are mycologically independent of each other: fungi do not exploit the irrigation system for their dispersion in paddy. Probably fungi prefer others dispersion systems such as air dispersion. This means that an open irrigation system is not to be considered as a continue system with free circulation of fungi. Indeed, each sector of the system appears characterized by a typical funga, which undergoes variations during the sampled season due to agricultural management and environmental conditions.


Assuntos
Fungos , Oryza , Microbiologia do Solo , Alternaria , Aspergillus , Biosseguridade , Fungos/fisiologia , Oryza/microbiologia
2.
Microorganisms ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208305

RESUMO

Contamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes. One of the primary goals of sustainable restoration and remediation of contaminated marine sediments is research regarding new biotechnologies employable in the decontamination of marine sediments, to consider sediments as a resource in many fields such as industry. In this context, microorganisms-in particular, fungi and bacteria-play a central and crucial role as the best tools of sustainable and green remediation processes. This review, carried out in the framework of the Interreg IT-FR Maritime GEREMIA Project, collects and shows the bioremediation and mycoremediation studies carried out on marine sediments contaminated with ecotoxic metals and organic pollutants. This work evidences the potentialities and limiting factors of these biotechnologies and outlines the possible future scenarios of the bioremediation of marine sediments, and also highlights the opportunities of an integrated approach that involves fungi and bacteria together.

3.
Life (Basel) ; 11(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806067

RESUMO

Is it possible to improve the efficiency of bioremediation technologies? The use of mixed cultures of bacteria and fungi inoculated at the rhizosphere level could promote the growth of the associated hyperaccumulating plant species and increase the absorption of metals in polluted soils, broadening new horizons on bioremediation purposes. This work investigates interactions between Ni-tolerant plant growth-promoting bacteria and fungi (BF) isolated from the rhizosphere of a hyperaccumulating plant. The aim is to select microbial consortia with synergistic activity to be used in integrated bioremediation protocols. Pseudomonas fluorescens (Pf), Streptomyces vinaceus (Sv) Penicilliumochrochloron (Po), and Trichoderma harzianum group (Th) were tested in mixes (Po-Sv, Po-Pf, Th-Pf, and Th-Sv). These strains were submitted to tests (agar overlay, agar plug, and distance growth co-growth tests), tailored for this aim, on Czapek yeast agar (CYA) and tryptic soy agar (TSA) media and incubated at 26 ± 1 °C for 10 days. BF growth, shape of colonies, area covered on plate, and inhibition capacity were evaluated. Most BF strains still exhibit their typical characters and the colonies separately persisted without inhibition (as Po-Sv) or with reciprocal confinement (as Th-Sv and Th-Pf). Even if apparently inhibited, the Po-Pf mix really merged, thus obtaining morphological traits representing a synergic co-growth, where both strains reached together the maturation phase and developed a sort of mixed biofilm. Indeed, bacterial colonies surround the mature fungal structures adhering to them without any growth inhibition. First data from in vivo experimentation with Po and Pf inocula in pot with metalliferous soils and hyperaccumulator plants showed their beneficial effect on plant growth. However, there is a lack of information regarding the effective co-growth between bacteria and fungi. Indeed, several studies, which directly apply the co-inoculum, do not consider suitable microorganisms consortia. Synergic rhizosphere BFs open new scenarios for plant growth promotion and soil bioremediation.

4.
Front Fungal Biol ; 2: 787381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744132

RESUMO

The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.

5.
Microorganisms ; 8(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545162

RESUMO

Composting is a complex process in which various micro-organisms, mainly fungi and bacteria, are involved. The process depends on a large number of factors (biological, chemical, and physical) among which microbial populations play a fundamental role. The high temperatures that occur during the composting process indicate the presence of thermotolerant and thermophilic micro-organisms that are key for the optimization of the process. However, the same micro-organisms can be harmful (allergenic, pathogenic) for workers that handle large quantities of material in the plant, and for end users, for example, in the indoor environment (e.g., pots in houses and offices). Accurate knowledge of thermotolerant and thermophilic organisms present during the composting stages is required to find key organisms to improve the process and estimate potential health risks. The objective of the present work was to study thermotolerant and thermophilic mycobiota at different time points of compost maturation. Fungi were isolated at four temperatures (25, 37, 45, and 50 °C) from compost samples collected at five different steps during a 21-day compost-maturation period in an active composting plant in Liguria (northwestern Italy). The samples were subsequently plated on three different media. Our results showed a high presence of fungi with an order of magnitude ranging from 1 × 104 to 3 × 105 colony-forming units (CFU) g-1. The isolated strains, identified by means of specific molecular tools (ITS, beta-tubulin, calmodulin, elongation factor 1-alpha, and LSU sequencing), belonged to 45 different species. Several thermophilic species belonging to genera Thermoascus and Thermomyces were detected, which could be key during composting. Moreover, the presence of several potentially harmful fungal species, such as Aspergillus fumigatus, A. terreus, and Scedosporium apiospermum, were found during the whole process, including the final product. Results highlighted the importance of surveying the mycobiota involved in the composting process in order to: (i) find solutions to improve efficiency and (ii) reduce health risks.

6.
Heliyon ; 5(8): e02210, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31406945

RESUMO

Evidence of pyrite dissolution by Telephora terrestris Ehrh were observed for the first time in the abandoned sulphide Libiola mine in May 2017 (Sestri Levante, Liguria, Italy). This fungus is an ectomycorrhizal species able to colonize this extreme environment and bioaccumulate metals such as copper and silver in its fruiting bodies, and it is known to establish symbiosis with maritime pines present in the area, thus favouring their recolonization of the site. This paper presents evidence of T. terrestris promoted dissolution of sulphide minerals. This species can remove from soil not only metals possibly toxic to the pine trees, but it can also contribute to the ions bioaccumulation through the bioweathering of sulphide mineral grains (especially pyrite).

7.
Chemosphere ; 232: 243-253, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31154185

RESUMO

This study faces the characterization of the culturable microbiota of the facultative Ni-hyperaccumulator Alyssoides utriculata to obtain a collection of bacterial and fungal strains for potential applications in Ni phytoextraction. Rhizosphere soil samples and adjacent bare soil associated with A. utriculata from serpentine and non-serpentine sites were collected together with plant roots and shoots. Rhizobacteria and fungi were isolated and characterized genotypically and phenotypically. Plants and soils were analyzed for total element concentration using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Serpentine and non-serpentine sites differ in terms of elements concentration in soil, plant roots and shoots. Ni and Co are significantly higher on serpentine site, while Ca is more abundant in non-serpentine site. Bacteria and fungi were significantly more abundant in rhizosphere than in bare soil and were dominated by genera Arthrobacter, Bacillus and Streptomyces, Penicillium and Mucor. The genus Pseudomonas was only found in rhizospheric serpentine soils (<2% of total serpentine isolates) and with Streptomyces sp. showed highest Ni-tolerance up to 15 mM. The same occurred for Trichoderma strain, belonging to the harzianum group (<2% of the total microfungal count) and Penicillium ochrochloron (<10% of the total microfungal count, tolerance up to Ni 20 mM). Among serpentine bacterial isolates, 8 strains belonging to 5 genera showed at least one PGPR activity (1-Aminocyclopropane-1-Carboxylic Acid (ACC) deaminase activity, production of indole-3-acetic acid (IAA), siderophores and phosphate solubilizing capacity), especially genera Pantoea, Pseudomonas and Streptomyces. Those microorganisms might thus be promising candidates for employment in bioaugmentation trials.


Assuntos
Níquel/análise , Rizosfera , Poluentes do Solo/análise , Aminoácidos Cíclicos , Bacillus/isolamento & purificação , Bactérias , Brassicaceae/microbiologia , Ácidos Indolacéticos , Raízes de Plantas/química , Pseudomonas , Sideróforos/análise , Solo/química , Microbiologia do Solo
8.
Environ Sci Pollut Res Int ; 26(35): 35602-35609, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30895545

RESUMO

Contaminated sediments represent an important management problem that also concerns their remediation. Indeed, port dredging activities produce huge volumes of contaminated sediments that, in turn, require proper handling because of their quantity of inorganic and organic substances. Conventional management-remediation strategies of polluted sediment involve sediment washing, electron-chemical separation, and thermal treatment. Recently, bioremediation strategies have also been proposed as a promising answer to the problem of contaminated sediments. In this context, fungi are pioneer microorganisms known to bioconcentrate, bioaccumulate, and biostabilize heavy metals. These capabilities suggest the potential to employ indigenous fungal strains to remediate polluted port sediments. In the framework of the European Project SEDITERRA (Guidelines for the sustainable treatment of dredged sediments in the Marittimo area), the aim of this paper is to characterize the fungal communities of port sediments of Genoa and present an innovative mycoremediation protocol to evaluate the capability of indigenous fungal strains in the heavy metal remediation. In this study, Penicillium expansum Link and Paecilomyces formosus (Sakag., May. Inoue & Tada) Houbraken & Samson have been selected as fungal species for the mycoremediation treatments. The protocol requires a fungal membrane system and the results highlight efficient bioremoval of Cu and Zn from sediments.


Assuntos
Biodegradação Ambiental , Fungos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Ambientais , Recuperação e Remediação Ambiental , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise
9.
Forensic Sci Int ; 289: e18-e23, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29907404

RESUMO

The present study reports the mycological data collected from two corpses preserved in controlled conditions and monitored for 6 weeks at the mortuary. On the whole during the monitoring more than 70 fungal CFU (Colony Forming Units) were sampled from the corpses. The data collected were used to map the body fungal colonization of the corpses during 6 weeks. The two body maps show a huge difference between these cases, mainly due to the perimortem conditions. In particular, in the case one the facial area colonised by fungi rose from 15% to 63% in six weeks, while the fungal colonization of case two was about 1% for the whole monitoring period. This work shows, for the first time, the data about the pattern of colonization and distribution of fungi on real corpses after death and argues about the influence of perimortem settings on fungal colonization. Moreover, the paper suggests exploiting the study of fungal colony development and maturation to assess post-mortem interval (PMI).


Assuntos
Restos Mortais , Cladosporium/isolamento & purificação , Penicillium/isolamento & purificação , Mudanças Depois da Morte , Idoso , Idoso de 80 Anos ou mais , Cladosporium/crescimento & desenvolvimento , Humanos , Masculino , Microscopia , Penicillium/crescimento & desenvolvimento
10.
J Environ Sci Health B ; 52(3): 166-170, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28121266

RESUMO

Abandoned industrial sites and mines may constitute possible hazards for surrounding environment due to the presence of toxic compounds that may contaminate soils and waters. The possibility to remove metal contaminants, specifically nickel (Ni), by means of fungi was presented exploiting a set of fungal strains isolated from a Ligurian dismissed mine. The achieved results demonstrate the high Ni(II) tolerance, up to 500 mg Ni l-1, and removal capability of a Trichoderma harzianum strain. This latter hyperaccumulates up to 11,000 mg Ni kg-1, suggesting its possible use in a bioremediation protocol able to provide a sustainable reclamation of broad contaminated areas.


Assuntos
Biodegradação Ambiental , Fungos/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Água/química , Aspergillus/metabolismo , Eurotium/metabolismo , Itália , Mineração , Trichoderma/metabolismo
11.
J Environ Sci Health B ; 52(3): 191-195, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28121268

RESUMO

Metal contamination constitutes a major source of pollution globally. Many recent studies emphasized the need to develop cheap and green technologies for the remediation or reclamation of environmental matrices contaminated by heavy metals. In this context, fungi are versatile organisms that can be exploited for bioremediation activities. In our work, we tested silver (Ag) bioaccumulation capabilities of three microfungal strains (Aspergillus alliaceus Thom & Church, Trichoderma harzianum Rifai, Clonostachys rosea (Link) Schroers, Samuels, Seifert & W. Gams) isolated from a silver polluted site. The aim was to select silver tolerant native strains and test their potential silver uptake. Among the three species tested, T. harzianum was the most efficient strain to tolerate and accumulate silver, showing an uptake capability of 153 mg L-1 taken at the Ag concentration of 330 mg L-1. Our study highlights the potential use of native microfungi spontaneously growing in sulphide-rich waste rock dumps, for silver bioaccumulation and bioremediation.


Assuntos
Aspergillus/metabolismo , Biodegradação Ambiental , Fungos/metabolismo , Metais Pesados/metabolismo , Prata/metabolismo , Poluentes do Solo/metabolismo , Trichoderma/metabolismo , Itália
12.
Waste Manag ; 60: 596-600, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27520390

RESUMO

Due to the wide range of applications in high-tech solutions, Rare Earth Elements (REEs) have become object of great interest. In the last years several studies regarding technologies for REE extraction from secondary resources have been carried out. In particular biotechnologies, which use tolerant and accumulator microorganisms to recover and recycle precious metals, are replacing traditional methods. This paper describes an original biometallurgical method to recover REEs from waste electrical and electronic equipment (WEEE) by using a strain of Penicillium expansum Link isolated from an ecotoxic metal contaminated site. The resulting product is a high concentrated solution of Lanthanum (up to 390ppm) and Terbium (up to 1520ppm) obtained from WEEE. Under this perspective, the proposed protocol can be considered a method of recycling exploiting biometallurgy. Finally, the process is the subject of the Italian patent application n. 102015000041404 submitted by the University of Genoa.


Assuntos
Resíduo Eletrônico , Metalurgia/métodos , Metais Terras Raras/isolamento & purificação , Penicillium/metabolismo , Biomassa , Biotecnologia/métodos , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...