Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 76(4): 341-345, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069776

RESUMO

Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional molecules that act as degraders. They selectively remove disease-associated proteins by hijacking the Ubiquitin-Proteasome System (UPS). Chemically, they consist of three parts: an E3 ligase ligand, a target of interest (TOI) ligand, and a linker, which connects the two moieties. The rapid expansion of PROTAC Technology as an innovative therapeutic modality in cancer fostered the drug discovery effort to optimize their physicochemical properties. Due to their large size, their features are far from the traditional 'drug-like' properties. This short review highlights some of the structural modifications in the linker component to optimize the PROTAC Drug Metabolism and Pharmacokinetics (DMPK) profile. In particular, we discussed aspects related to solubility, cell permeability, active transporters efflux and, metabolic stability.

2.
Front Chem ; 9: 672267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959589

RESUMO

Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional degraders that specifically eliminate targeted proteins by hijacking the ubiquitin-proteasome system (UPS). This modality has emerged as an orthogonal approach to the use of small-molecule inhibitors for knocking down classic targets and disease-related proteins classified, until now, as "undruggable." In early 2019, the first targeted protein degraders reached the clinic, drawing attention to PROTACs as one of the most appealing technology in the drug discovery landscape. Despite these promising results, PROTACs are often affected by poor cellular permeability due to their high molecular weight (MW) and large exposed polar surface area (PSA). Herein, we report a comprehensive record of PROTAC design, pharmacology and thermodynamic challenges and solutions, as well as some of the available strategies to enhance cellular uptake, including suggestions of promising biological tools for the in vitro evaluation of PROTACs permeability toward successful protein degradation.

3.
Chimia (Aarau) ; 74(4): 274-277, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32331546

RESUMO

In the context of dysregulated ubiquitylation, the accumulation of oncogenic substrates can lead to tumorigenesis. In particular, mutations in Von Hippel-Lindau (VHL) E3 ubiquitin ligase are related to overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α) which is evolving into renal cell carcinoma (RCC). The classical approach of drug discovery focuses on the development of highly selective small molecules able to bind and to inhibit enzymatic active sites. This strategy faces limitations in the context of ' undruggable ' proteins, which are challenging to target. The discovery of Proteolysis Targeting Chimeras (PROTACs) as an alternative strategy to induce selective protein degradation is presented as a working hypothesis to understand further the UbiquitinProteasome System (UPS) and eventually counteract RCC cancer lacking VHL ubiquitin ligase.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Peptídeos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Proteína Supressora de Tumor Von Hippel-Lindau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...