Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 192: 106656, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029932

RESUMO

A key aspect that must be supervised during the development of recombinant therapeutic products is the potential presence of impurities. Residual host cell proteins (HCPs) are a major class of process-related impurities derived from the host organism that even in trace amount have the potential to affect product quality, safety, and efficacy. Therefore, the product purification processes must be optimized to consistently remove as many HCPs as feasible, with the goal of making the product as pure as possible. The workhorse of HCP monitoring and quantitation during bioprocessing manufacturing is sandwich ELISA (enzyme-linked immunosorbent assay), which employs polyclonal anti-HCP antibodies for both capture and detection. Commercial ELISA kits developed from Chinese Hamster Ovary (CHO) cell lines are widely applied in early drug development stages (preclinical, phase I, and phase II), but are not specifically designed for a given manufacturer's proprietary cell line, and users do not have control over reagent availability and lot-to-lot consistency. For later development stages, the upstream process-specific method is preferred to guarantee an improved sensitivity and coverage. In agreement with the USP General Chapter 〈1132〉, a platform assay can be used in place of the commercial one through all stages of product development, if already available when product development starts. This proof-of-concept study was carried out to demonstrate the feasibility and the advantages of the development of a proprietary CHO HCPs platform ELISA. Different proprietary mock materials have been characterized and compared by orthogonal bidimensional electrophoresis techniques (SDS-PAGE coupled to SS/WB and 2D DIGE) with the scope of selecting the best antigen-antibody couple for setting up the in-house ELISA. A preliminary evaluation of the in-house method performance has been done in comparison with the commercial assay, demonstrating that the platform method is promising for an accurate and precise CHO HCPs quantification during the early phase product and process development.


Assuntos
Desenvolvimento de Medicamentos , Proteínas , Cricetinae , Animais , Cricetulus , Células CHO , Ensaio de Imunoadsorção Enzimática/métodos
2.
Eur J Pharm Sci ; 172: 106139, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134506

RESUMO

A key aspect that must be supervised during the development of a biotherapeutic is the presence of elemental impurities in the final drug product: they must be quantified as to ensure that their concentrations does not affect patients' safety. Regulatory guidelines such as ICH Q3D provides Permitted Daily Exposure (PDE) limits for those impurities considered having a higher potential safety risk. However, one of the limits of such PDE values is that they account for the safety risk, while alterations of certain Quality Attributes (QA) of a biologic may also take place. In order to understand how certain impurities could affect not only the safety of patients, but also the physicochemical properties of biotherapeutics, here we present a study in which we examined how four commonly observed elemental impurities could impact the QAs of a Fc-fusion protein, under normal storage conditions and after six weeks of incubation at +25 °C and +40 °C. The molecule was indeed treated with increasing concentrations of Ni2+, Cu2+, Zn2+ and Fe3+ and the potential changes in conformation, oxidation, aggregation, and fragmentation were monitored. Our data suggest that keeping the levels of these impurities under the safety threshold limits does not guarantee the product quality. While nickel and zinc slightly altered the physicochemical properties of our Fc-fusion protein, iron and copper appeared to be more harmful for the QAs stability. Indeed, these latter elements might cause significant alterations of the product quality such as to potentially alter its efficacy.


Assuntos
Cobre , Zinco , Humanos , Ferro , Níquel , Temperatura
3.
Biologicals ; 43(6): 457-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324466

RESUMO

Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes.


Assuntos
Nefelometria e Turbidimetria/métodos , Material Particulado/análise , Preparações Farmacêuticas/análise , Ar , Anticorpos Monoclonais/análise , Terapia Biológica , Composição de Medicamentos , Contaminação de Medicamentos , Embalagem de Medicamentos , Liofilização , Microbolhas , Técnicas Analíticas Microfluídicas , Tamanho da Partícula , Proteínas Recombinantes/análise , Espalhamento de Radiação , Óleos de Silicone , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Pharm Sci ; 104(6): 1899-1908, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25832583

RESUMO

Measurement and characterization of subvisible particles (defined here as those ranging in size from 2 to 100 µm), including proteinaceous and nonproteinaceous particles, is an important part of every stage of protein therapeutic development. The tools used and the ways in which the information generated is applied depends on the particular product development stage, the amount of material, and the time available for the analysis. In order to compare results across laboratories and products, it is important to harmonize nomenclature, experimental protocols, data analysis, and interpretation. In this manuscript on perspectives on subvisible particles in protein therapeutic drug products, we focus on the tools available for detection, characterization, and quantification of these species and the strategy around their application.


Assuntos
Agregados Proteicos , Proteínas/química , Animais , Composição de Medicamentos/métodos , Descoberta de Drogas/métodos , Humanos , Luz , Microscopia/métodos , Tamanho da Partícula , Estabilidade Proteica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...