Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 44(6): 2244-2253, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30838425

RESUMO

PURPOSE: To evaluate the impact of complex-averaging on image quality (IQ) and diagnostic accuracy of acquired and calculated high b value (aHBV, cHBV) images in diffusion-weighted prostate MRI. MATERIALS AND METHODS: This retrospective study included 84 patients who underwent multiparametric prostate MRI at 3 Tesla without endorectal coil. DWIs were acquired at three different b values which included two lower b values (b = 50,900 s/mm2) and one higher b value (aHBV at 2000 s/mm2). The acquired data were postprocessed to generate two different types of trace-weighted images-using conventional magnitude-averaging and complex-averaging. Using lower b values (b = 50,900 s/mm2) from both conventional and complex-averaged image sets, cHBV images (b = 2000 s/mm2) and ADC maps were derived. All image sets were reviewed by two radiologists in different reading sessions to assess image quality and PIRADS. The diagnostic accuracy of different image sets for the detection of prostate lesions was performed by correlating PIRADS and Gleason scores. RESULTS: Complex-averaging did not impact ADC values of the prostate lesions compared to magnitude-averaging (P = 0.08). Complex-averaging improved image quality of acquired high b value and calculated high b value images (P < 0.0001). Complex-averaging also improved the level of confidence (LOC) of the acquired high b value for both readers (P < 0.0001, P < 0.05), but only for reader A in calculated high b value (P < 0.0001). The image quality of calculated high b value images was not significantly different than acquired high b value images. The dataset combining complex-averaging and calculated high b value provided the highest diagnostic accuracy (but not statistically significant) for detection of the significant prostate lesion compared to the magnitude-averaged acquired high b value (79.55% vs. 72.73%; P = 0.317). The mean acquisition time for b = 2000 s/mm2 sequence (aHBV) was 6 min 30 s (± 1 min 16 s) out of a total of 28 min 31 s (± 4 min 26 s) for the entire mp-MRI protocol (approximately 25% of total scan time). CONCLUSION: Complex-averaging provides better image quality and level of confidence without significant impact on ADC values and diagnostic accuracy for detection of the significant prostate lesions . The calculated high b value images are also comparable to (and can substitute) the acquired high b value images which can help in reducing the imaging time.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Biópsia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
2.
Lab Chip ; 14(13): 2202-11, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24860845

RESUMO

Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photocrosslinkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly(ethylene glycol-co-lactide) acrylate (SPELA), poly(ethylene glycol) dimethacrylate (PEGDMA) and poly(ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip.


Assuntos
Prótese Vascular , Hidrogéis/química , Osteoblastos , Polietilenoglicóis/química , Sefarose/química , Engenharia Tecidual , Animais , Linhagem Celular , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
3.
Radiographics ; 34(2): 429-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24617690

RESUMO

Pelvic floor failure is a common disorder that can seriously jeopardize a woman's quality of life by causing urinary and fecal incontinence, difficult defecation, and pelvic pain. Multiple congenital and acquired risk factors are associated with pelvic floor failure, including altered collagen metabolism, female sex, vaginal delivery, menopause, and advanced age. A complex variety of fascial and muscular lesions that range from stretching, insertion detachment, denervation atrophy, and combinations of pelvic floor relaxation to pelvic organ prolapse may manifest in a single patient. Thorough preoperative assessment of pelvic floor failure is necessary to reduce the rate of relapse, which is reported to be as high as 30%. Magnetic resonance (MR) imaging of the pelvic floor is a two-step process that includes analysis of anatomic damage on axial fast spin-echo (FSE) T2-weighted images and functional evaluation using sagittal dynamic single-shot T2-weighted sequences during straining and defecation. This article presents high-resolution FSE T2-weighted MR images that permit detailed assessment of anatomic lesions and briefly describes pelvic floor pathophysiology, associated clinical symptoms, and patterns of dysfunction seen with dynamic MR imaging sequences. MR imaging is a powerful tool that enables radiologists to comprehensively evaluate pelvic anatomic and functional abnormalities, thus helping surgeons provide appropriate treatment and avoid repeat operations.


Assuntos
Distúrbios do Assoalho Pélvico/diagnóstico , Diafragma da Pelve/patologia , Diafragma da Pelve/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Distúrbios do Assoalho Pélvico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...