Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 12(7): e201800397, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30697946

RESUMO

Optical fibers have recently attracted a noticeable interest for biomedical applications because they provide a minimally invasive method for in vivo sensing, imaging techniques, deep-tissue photodynamic therapy or optogenetics. The silica optical fibers are the most commonly used because they offer excellent optical properties, and they are readily available at a reasonable price. The fused silica is a biocompatible material, but it is not bioresorbable so it does not decompose in the body and the fibers must be ex-planted after in vivo use and their fragments can present a considerable risk to the patient when the fiber breaks. In contrast, optical fibers made of phosphate glasses can bring many benefits because such glasses exhibit good transparency in ultraviolet-visible and near-infrared regions, and their solubility in water can be tailored by changing the chemical composition. The bioresorbability and toxicity of phosphate glass-based optical fibers were tested in vivo on male laboratory rats for the first time. The fiber was spliced together with a standard graded-index multi-mode fiber pigtail and an optical probe for in vitro pH measurement was prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method to demonstrate applicability and compatibility of the fiber with common fiber optics.


Assuntos
Fibras Ópticas , Fosfatos/química , Fosfatos/metabolismo , Animais , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Wistar , Dióxido de Silício/química
2.
Opt Lett ; 43(4): 671-674, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444050

RESUMO

We demonstrate, for the first time, an inscription and wet dissolution study of Bragg gratings in a bioresorbable calcium-phosphate glass optical fiber. Bragg gratings, with average refractive index changes of 5.8×10-4, were inscribed using 193 nm excimer laser radiation. Results on the dissolution of the irradiated fiber in simulated physiological conditions are presented after immersing a tilted Bragg grating in a phosphate buffered saline solution for 56 h; selective chemical etching effects are also reported. The investigations performed pave the way toward the use of such phosphate glass fiber Bragg gratings for the development of soluble photonic sensing probes for the efficient in vivo monitoring of vital mechanical or chemical parameters.


Assuntos
Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Fibras Ópticas , Fenômenos Ópticos , Vidro/química
3.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28635027

RESUMO

In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 µm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 µm core bioresorbable fiber.


Assuntos
Fibras Ópticas , Absorção Fisico-Química , Fosfatos de Cálcio/química , Difusão , Vidro/química , Modelos Lineares , Fatores de Tempo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...