Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102263, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843311

RESUMO

Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.


Assuntos
Proteína Quinase CDC2 , Quinase 2 Dependente de Ciclina , Neoplasias Ovarianas , Proteína Quinase CDC2/metabolismo , Divisão Celular/genética , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitose , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
2.
Sci Rep ; 9(1): 5163, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914742

RESUMO

Focal adhesions (FA) are a complex network of proteins that allow the cell to form physical contacts with the extracellular matrix (ECM). FA assemble and disassemble in a dynamic process, orchestrated by a variety of cellular components. However, the underlying mechanisms that regulate adhesion turnover remain poorly understood. Here we show that RhoG, a Rho GTPase related to Rac, modulates FA dynamics. When RhoG expression is silenced, FA are more stable and live longer, resulting in an increase in the number and size of adhesions, which are also more mature and fibrillar-like. Silencing RhoG also increases the number and thickness of stress fibers, which are sensitive to blebbistatin, suggesting contractility is increased. The molecular mechanism by which RhoG regulates adhesion turnover is yet to be characterized, but our results demonstrate that RhoG plays a role in the regulation of microtubule-mediated FA disassembly.


Assuntos
Adesões Focais/metabolismo , Microtúbulos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Linhagem Celular Tumoral , Forma Celular , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Pseudópodes/metabolismo , Fibras de Estresse/metabolismo
3.
Cell Signal ; 58: 34-43, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30849518

RESUMO

G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cß (PLCß) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gßγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gßγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gßγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gßγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gßγ signaling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Células HeLa , Humanos , Hidrólise , Fosfolipase C beta/metabolismo , Transfecção
4.
J Mol Biol ; 429(13): 2030-2041, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28434938

RESUMO

Dedifferentiation is an important process to replenish lost stem cells during aging or regeneration after injury to maintain tissue homeostasis. Here, we report that Enhancer of Zeste [E(z)], a component of the Polycomb repression complex 2 (PRC2), is required to maintain a stable pool of germline stem cells (GSCs) within the niche microenvironment. During aging, germ cells with reduced E(z) activity cannot meet that requirement, but the defect arises from neither increased GSC death nor premature differentiation. Instead, we found evidence that the decrease of GSCs upon the inactivation of E(z) in the germline could be attributed to defective dedifferentiation. During recovery from genetically manipulated GSC depletion, E(z) knockdown germ cells also fail to replenish lost GSCs. Taken together, our data suggest that E(z) acts intrinsically in germ cells to activate dedifferentiation and thus replenish lost GSCs during both aging and tissue regeneration.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Testículo/fisiologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...