Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 728: 150324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968772

RESUMO

Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.

2.
Stem Cell Res Ther ; 8(1): 95, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446230

RESUMO

BACKGROUND: Prostate cancer is the second most frequent cancer among males worldwide, and most patients with metastatic disease eventually develop therapy-resistant disease. Recent research has suggested the existence of cancer stem-like cells, and that such cells are behind the therapy resistance and progression. METHODS: Here, we have taken advantage of the relatively quiescent nature of stem cells to identify the slow-cycling label-retaining stem cell (LRC) populations of the prostate gland. Mice were pulsed with bromodeoxyuridine (BrdU) during prostate organogenesis, and the LRC populations were then identified and characterized in 5-day-old and in 6-month-old adult animals using immunohistochemistry and immunofluorescence. RESULTS: Quantification of LRCs in the adult mouse prostate showed that epithelial LRCs were significantly more numerous in prostatic ducts (3.7 ± 0.47% SD) when compared to the proximal (1.4 ± 0.83%) and distal epithelium (0.48 ± 0.08%) of the secretory lobes. LRCs were identified in both the basal and epithelial cell layers of the prostate, and LRCs co-expressed several candidate stem cell markers in a developmental and duct/acini-specific manner, including Sca-1, TROP-2, CD133, CD44, c-kit, and the novel prostate progenitor marker cytokeratin-7. Importantly, a significant proportion of LRCs were localized in the luminal cell layer, the majority in ducts and the proximal prostate, that co-expressed high levels of androgen receptor in the adult prostate. CONCLUSIONS: Our results suggest that there are separate basal and luminal stem cell populations in the prostate, and they open up the possibility that androgen receptor-expressing luminal stem-like cells could function as cancer-initiating and relapse-responsible cells in prostate cancer.


Assuntos
Biomarcadores/metabolismo , Próstata/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos Ly/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/citologia , Queratina-7/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Próstata/crescimento & desenvolvimento , Próstata/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Androgênicos/metabolismo , Células-Tronco/citologia
3.
Front Oncol ; 6: 273, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119854

RESUMO

Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody-drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs, exhibiting cellular resistance mechanisms to conventional therapy. This paper presents and evaluates the possibility of using alpha-particle emitting radionuclides in the treatment of prostate cancer (PCa) and discusses the parameters that have to be considered as well as pros and cons of targeted alpha-particle therapy in the treatment of PCa. By targeting and eradicating the CSCs responsible of tumor recurrence in patients who no longer respond to conventional therapies, including androgen deprivation and castration, it may be possible to cure the disease, or prolong survival significantly.

5.
Nucleic Acids Res ; 42(2): 999-1015, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163104

RESUMO

The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds chromatin regions containing well-characterized cis-elements known to mediate REST transcriptional repression, while cell imaging studies confirmed that REST and AR closely co-localize in vivo. Androgen-induced gene repression also involves modulation of REST protein turnover through actions on the ubiquitin ligase ß-TRCP. Androgen deprivation or AR blockage with inhibitor MDV3100 (Enzalutamide) leads to neuroendocrine (NE) differentiation, a phenomenon that is mimicked by REST inactivation. Gene expression profiling revealed that REST not only acts to repress neuronal genes but also genes involved in cell cycle progression, including Aurora Kinase A, that has previously been implicated in the growth of NE-like castration-resistant tumors. The analysis of prostate cancer tissue microarrays revealed that tumors with reduced expression of REST have higher probability of early recurrence, independently of their Gleason score. The demonstration that REST modulates AR actions in prostate epithelia and that REST expression is negatively correlated with disease recurrence after prostatectomy, invite a deeper characterization of its role in prostate carcinogenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Transdiferenciação Celular , Cromatina/metabolismo , Proteínas Correpressoras , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/imunologia , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/imunologia
6.
Eur Urol ; 54(6): 1344-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18375047

RESUMO

BACKGROUND: There is a lack of understanding of the processes that regulate differentiation in the prostate. OBJECTIVE: To determine localisation, activity, and regulation of cytodifferentiation-modulatory proteins in the human adult prostate. DESIGN, SETTINGS, AND PARTICIPANTS: Eighteen volunteering patients with organ-confined prostate cancer were prospectively enrolled at a single university hospital. INTERVENTION: All patients underwent radical prostatectomy, and normal/benign tissue was excised and obtained from the transition zone. MEASUREMENTS: Expression and activity of Notch-protein family members, including the Notch-homologous protein Delta-like 1 (Dlk-1/Pref1), were investigated immunohistochemically in normal/benign tissue and explant cultures. The effect of the Notch inhibitor L-685,458 on Dlk-1 expression and cell number was investigated in primary cell cultures, and data were analysed with Student t test. RESULTS AND LIMITATIONS: Mature luminal cells were found to co-express Notch-1 and its ligand Jagged1, but epithelia in normal/benign tissue showed no active Notch signalling. The basal cell layer, rare candidate epithelial stem cells, and a subpopulation of neuroendocrine cells expressed the differentiation protein Dlk-1. In explant cultures, luminal cells and Jagged1 expression were lost, whereas intermediate cells downregulated Dlk-1 concomitant with Notch-1 upregulation and activation. Notch inhibition in primary cell cultures led to lower cell densities (p<0.001) and suppressed downregulation of Dlk-1. This is a small study; current results need to be confirmed in larger investigations. CONCLUSIONS: We demonstrate that Notch-1 is upregulated in differentiation of prostate epithelia, and that the novel prostate progenitor marker Dlk-1 is downregulated by Notch signalling in intermediate cells. The identification of Dlk-1-expressing candidate stem and neuroendocrine cells suggests a hierarchical relationship.


Assuntos
Regulação para Baixo , Células Epiteliais , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Próstata/citologia , Transdução de Sinais , Células-Tronco , Proteínas de Ligação ao Cálcio , Humanos , Masculino , Estudos Prospectivos
7.
Eur Urol ; 53(3): 524-31, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18053634

RESUMO

OBJECTIVES: Questions regarding the cell source and mechanisms in the initiation and progression of prostate cancer are today still open for debate. Indeed, our knowledge regarding prostate cell regulation, self-renewal, and cytodifferentiation is presently rather limited. In this study, we investigated these processes in the normal adult human prostate. METHODS: Dynamic expression patterns in prostate stem/progenitor cells, intermediate/transit-amplifying cells, and cell lineages were immunohistochemically identified in an in situ explant renewal model of the human normal/benign adult prostate (n=6). RESULTS: Cells with a basal phenotype proliferated significantly in explant cultures, whereas luminal cells went into apoptosis. Results further show down-regulation in tissue cultures of the basal and hypothetical stem cell marker Bcl-2 in the majority of cells, except in rare putative epithelial stem cells. Investigation of established (AC133) and novel candidate prostate stem/progenitor markers, including the cell surface receptor tyrosine kinase KIT and its ligand stem cell factor (SCF), showed that these rare epithelial cells are AC133(+)/CD133(low)/Bcl-2(high)/cytokeratin(+)/vimentin(-)/KIT(low)/SCF(low). In addition, we report on a stromal population that expresses the mesenchymal marker vimentin and that is AC133(-)/CD133(high)/Bcl-2(-)/cytokeratin(-)/KIT(high)/SCF(high). CONCLUSIONS: We provide evidence for epithelial renewal in response to tissue culture and for basal and epithelial stem/progenitor cell recruitment leading to an expansion of an intermediate luminal precursor phenotype. Data further suggest that SCF regulates prostate epithelial stem/progenitor cells in an autocrine manner and that all or a subset of the identified novel stromal phenotype represents prostate stromal progenitor cells or interstitial pacemaker cells or both.


Assuntos
Células Epiteliais/citologia , Próstata/citologia , Células-Tronco/citologia , Células Estromais/citologia , Antígeno AC133 , Adulto , Antígenos CD/imunologia , Antígenos CD/metabolismo , Contagem de Células , Diferenciação Celular , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunofluorescência , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Antígeno Ki-67/imunologia , Masculino , Peptídeos/imunologia , Peptídeos/metabolismo , Fenótipo , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Valores de Referência , Fator de Células-Tronco/biossíntese , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...