Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 88(18): 8116-20, 1991 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-1896458

RESUMO

A semisynthetic RNase, RNase-(1-118).(111-124), consisting of a noncovalent complex between residues 1-118 of RNase (obtained from the proteolytic digestion of RNase A), and a synthetic 14-residue peptide containing residues 111-124 of RNase, exhibits 98% of the enzymatic activity of bovine pancreatic ribonuclease A (EC 3.1.27.5). The replacement of aspartic acid-121 by asparagine in this semisynthetic RNase to form the "D121N" analog reduces kcat/Km to 2.7% of the value for RNase A. In the present work, 1H NMR spectroscopy has been used to probe the ionization states of His12, His105, and His119 in this catalytically defective semisynthetic RNase. A comparison of the observed resonances of D121N with those previously determined by others for RNase A enabled us to assign the C2 proton NMR resonances to individual residues; the assignment of His119 was confirmed by titrating D121N with the fully deuterated peptide, [Asn121]-RNase-(111-124). The observed pKa values of His12, His105, and His119 decrease 0.18, 0.16, and 0.02 pH unit, respectively, as a result of the D121N replacement. Values calculated by using a finite difference algorithm to solve the Poisson-Boltzmann equation (the DELPHI program, version 3.0) and a refined 2.0-A coordinate set for the crystal structure of D121N differ significantly for active site residues His12 (delta pKa = -0.58) and His119 (delta pKa = -0.55) but not for His105 (delta pKa = -0.10). The elmination of bound water from the calculations reduced, but did not reconcile, these discrepancies (His12, delta pKa = -0.36; His119, delta pKa = -0.41).


Assuntos
Histidina/química , Ribonucleases/química , Animais , Asparagina/química , Ácido Aspártico/química , Bovinos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
2.
Blood ; 73(4): 976-82, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2522013

RESUMO

Platelet thrombospondin interacts with plasminogen in a specific and saturable manner. Thrombospondin was found to specifically bind to plasminogen and the nonenzyme chain of plasmin. Preincubation of 125I-labeled thrombospondin with 30 mmol/L lysine was without effect in the binding of thrombospondin to immobilized plasminogen; preincubation of 125I-labeled plasminogen with 30 mmol/L lysine, on the other hand, significantly reduced the binding of plasminogen to immobilized thrombospondin, suggesting that the interaction of thrombospondin with plasminogen is not the direct result of the lysine binding sites of plasminogen. Arginine and benzamidine, ligands known to specifically bind to the kringle 5 domain of plasminogen, blocked the binding of thrombospondin to plasminogen. Limited elastase proteolysis of plasminogen and plasmin resulted in the generation of two distinct thrombospondin binding domains, one of which was retained on lysine-agarose. The isolation and amino-terminal analysis of these domains following elastase proteolysis of plasminogen identified them, respectively, as a domain containing kringle structures 4 and 5 and plasmin and the other domain consisting of kringle 5-plasmin. A 16-residue synthetic peptide, which represents the amino acids linking kringle 4 to kringle 5 (residues 435-450 of native plasminogen), was without effect in either binding to thrombospondin or blocking the binding of thrombospondin to plasminogen. Plasminogen, therefore, possesses a single thrombospondin interactive site that is independent of, but influenced by, the lysine binding site containing kringle structures and most likely is located within the kringle 5 domain.


Assuntos
Glicoproteínas/metabolismo , Plasminogênio/metabolismo , Animais , Bovinos , Fibrinolisina/metabolismo , Humanos , Trombospondinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...