Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 7): 755-760, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35855364

RESUMO

The reaction of Mn(NCS)2 or Fe(NCS)2 with 3-methyl-pyridine (C6H7N) leads to the formation of two isostructural compounds with compositions [Mn(NCS)2(C6H7N)4] (1) and [Fe(NCS)2(C6H7N)4] (2). IR spectroscopic investigations indicate that only terminally coordinated thio-cyanate anions are present. This is confirmed by single-crystal structure analysis, which shows that their crystal structures consist of discrete centrosymmetric complexes, in which the metal cations are octa-hedrally coordinated by two N-bonded thio-cyanate anions and four 3-methyl-pyridine ligands. X-ray powder diffraction (XRPD) proves that pure samples have been obtained. Thermogravimetric measurements show that decomposition starts at about 90°C and that the two coligands are removed in one step for 1 whereas for 2 no clearly resolved steps are visible. XRPD measurements of the residue obtained after the first mass loss of 1 show that a new and unknown crystalline compound has been formed.

2.
Dalton Trans ; 51(22): 8885-8892, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635098

RESUMO

Three new hybrid organic-inorganic frameworks employing octacyanidometallates and 4,4'-bypiridine dioxide (4,4'-bpdo) as bridging molecules were prepared and characterized. The three-dimensional coordination frameworks {[FeII(µ-4,4'-bpdo)(H2O)2]2[MIV(CN)8]·9H2O}n (Fe2Mo, Fe2W and Fe2Nb; M = Mo, W and Nb) are composed of cyanido-bridged chains, which are interconnected by the organic linkers. Magnetic measurements for Fe2Nb show a two-step transition to the antiferromagnetic state, which results from the cooperation of antiferromagnetic intra- and inter-chain interactions. Fe2Mo and Fe2W, on the other hand, behave as paramagnets at 2 K because of the diamagnetic character of the corresponding octacyanidometallate(IV) building units. However, after 450 nm light irradiation they show transition to the metastable high spin MoIV or WIV states, respectively, with distinct ferromagnetic intrachain spin interactions, as opposed to the antiferromagnetic ones observed in the Fe2Nb framework.

3.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 1): 66-70, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35079427

RESUMO

The reaction of one equivalent Co(NCS)2 with four equivalents of urotropine (hexa-methyl-ene-tetra-mine) in ethanol leads to the formation of two compounds, namely, bis-(ethanol-κO)bis-(thio-cyanato-κN)bis-(urotropine-κN)cobalt(II), [Co(NCS)2(C6H12N4)2(C2H6O)2] (1), and tetra-kis-(ethanol-κO)bis-(thio-cyanato-κN)cobalt(II)-urotropine (1/2), [Co(NCS)2(C2H6O)4]·2C6H12N4 (2). In 1, the Co cations are located on centers of inversion and are sixfold coordinated by two terminal N-bonded thio-cyanate anions, two ethanol and two urotropine ligands whereas in 2 the cobalt cations occupy position Wyckoff position c and are sixfold coordinated by two anionic ligands and four ethanol ligands. Compound 2 contains two additional urotropine solvate mol-ecules per formula unit, which are hydrogen bonded to the complexes. In both compounds, the building blocks are connected via inter-molecular O-H⋯N (1 and 2) and C-H⋯S (1) hydrogen bonding to form three-dimensional networks.

4.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 11): 1082-1086, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34868640

RESUMO

The crystal structure of the title solvated coordination compound, [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N, consists of discrete complexes in which the Co2+ cations (site symmetry ) are sixfold coordinated by two N-bonded thio-cyanate anions, two water mol-ecules and two hexa-methyl-ene-tetra-mine (HMT) mol-ecules to generate distorted trans-CoN4O2 octa-hedra. The discrete complexes are each connected by two HMT solvate mol-ecules into chains via strong O-H⋯N hydrogen bonds. These chains are further linked by additional O-H⋯N and C-H⋯N and C-H⋯S hydrogen bonds into a three-dimensional network. Within this network, channels are formed that propagate along the c-axis direction and in which additional aceto-nitrile solvent mol-ecules are embedded, which are hydrogen bonded to the network. The CN stretching vibration of the thio-cyanate ion occurs at 2062 cm-1, which is in agreement with the presence of N-bonded anionic ligands. XRPD investigations prove the formation of the title compound as the major phase accompanied by a small amount of a second unknown phase.

5.
Phys Chem Chem Phys ; 23(17): 10281-10289, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903874

RESUMO

A large single crystal of a compound from the family of coordination polymer [Co(NCS)2(L)2]n chains was synthesized and its magnetic properties are reported. [Co(NCS)2(4-(3-phenylpropyl)pyridine)2]n is ferromagnetic with Tc = 3.39 K. Single-ion ab initio calculations predict an almost Ising-type magnetic anisotropy and the direction of the magnetic easy-axis nearly along the Co-Npy bond of the apical pyridine-based co-ligand. Both predictions are confirmed by single-crystal magnetic measurements. The magnetic relaxation of the single crystal sample significantly differs from the powder sample data, and clearly shows the presence of two separate relaxation processes. The process dominant below 3.2 K demonstrates a single chain magnet (SCM) behaviour, with a crossover between single-wall and two-wall processes, in spite of the fact that the system is ferromagnetically ordered. The faster process that dominates just below Tc is attributed to spin waves. Micromagnetic Monte Carlo simulations of the investigated compound show that the dipolar field cancels for some chains located at the border between 3-dimensional domains. Such chains are responsible for the measured ac signal, and demonstrate the SCM behaviour. The quantitative analysis of the SCM relaxation time is supported by preparing and examining a corresponding diamagnetically diluted compound, [CoxCd1-x(NCS)2(4-(3-phenylpropyl)pyridine)2]n (x = 0.013), which behaves as a field-induced single-ion magnet. The relaxation pathways for single Co(ii) spins are determined to be Raman, direct, and quantum tunneling processes, which were included in an improved approach to describe the magnetic relaxation in the Co(ii)-based SCM compound.

6.
Materials (Basel) ; 13(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272001

RESUMO

Harmful lesions occur in the body around multielement stabilisers made of AISI 316 LVM (Low Vacuum Melted) steel, caused by products of pitting, fretting or crevice corrosion. Preventing the effect is possible by modifying the surface of the steel implants. Therefore, the goal of the paper is the comparison of the mechanical and physiochemical properties of plates for treating deformations of the anterior chest wall made of AISI 316 LVM steel, subjected to diffusion and sterilisation processes and exposed to Ringer's solution. The surface of the implants was subjected to electrochemical polishing, chemical passivation and, in order to modify their properties, nitrocarburised and nitrided diffusion layers were created on selected stabilisers under glow discharge conditions with the use of an active screen at a temperature of 420 °C, over 60 min. The conducted studies involved the examination of the microstructure of the formed layers, surface roughness testing, analysis of contact angles and surface free energy, examination of resistance to pitting and crevice corrosion and examination of nanohardness. On the basis of the results of the conducted studies, it was established that the most advantageous set of properties after sterilisation and exposure to Ringer's solution was displayed by implants with a formed diffusion nitrocarburised layer.

7.
Dalton Trans ; 49(43): 15310-15322, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33118568

RESUMO

Reaction of Co(NCS)2 with 4-bromopyridine leads to the formation of discrete complexes with the composition Co(NCS)2(4-bromopyridine)4·(CH3CN)0.67 (1), Co(NCS)2(4-bromopyridine)2(H2O)2 (2), Co(NCS)2(4-bromopyridine)2(CH3OH)2 (3) and Co(NCS)2(4-bromopyridine)2(CH3CN)2 (4). Upon heating compounds 2 and 4 transform into a crystalline product with the composition Co(NCS)2(4-bromopyridine)2 (5-I) that also can easily be obtained from solution. In this compound, the Co cations are linked by single µ-1,3-bridging thiocyanate anions into layers. Thermal decomposition of 3 leads to a second isomer (5-II), which is thermodynamically metastable and can also be synthesized from solution under kinetic control. In contrast to 5-I, the Co cations are linked by pairs of anionic ligands into linear chains. The magnetic exchange is very weak in 5-I, but much stronger and ferromagnetic along the linear chains in 5-II. AF ordering in 5-II is reached at 3.05 K, and magnetic relaxation is observed at the metamagnetic transition with an Arrhenius barrier of 17.1(3) cm-1. Ab initio computational studies reveal a different type of magnetic anisotropy to be present in the two crystallographically - independent Co centers in 5-II.

8.
Inorg Chem ; 59(13): 8971-8982, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32551545

RESUMO

Reaction of Co(NCS)2 with different coligands leads to the formation of three compounds with the general composition [Co(NCS)2(L)2]n (L = aniline (1), morpholine (2), and ethylenethiourea (3)). In all of these compounds the cobalt(II) cations are octahedrally coordinated by two trans thiocyanate N and S atoms and the apical donor atoms of the coligands and are linked into linear chains by pairs of anionic ligands. The magnetic behavior was investigated by a combination of static and dynamic susceptibility as well as specific-heat measurements, computational studies, and THz-EPR spectroscopy. All compounds show antiferromagnetic ordering as observed for similar compounds with pyridine derivatives as coligands. In contrast to the latter, for 1-3 significantly higher critical temperatures and no magnetic single-chain relaxations are observed, which can be traced back to stronger interchain interactions and a drastic change in the magnetic anisotropy of the metal centers. These results are discussed and compared with those of the pyridine-based compounds, which provides important insights into the parameters that govern the magnetic behavior of such one-dimensional coordination polymers.

9.
Dalton Trans ; 49(20): 6807-6815, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32374334

RESUMO

Single ion magnets have long been considered good prospective candidates to record a bit of information. One of the smallest known single ion magnets is CoBr2(pyridine)2. This molecular compound exhibits slow relaxation of magnetization mainly due to the thermally activated Orbach process, [A. M. Majcher et al., Chem. Sci., 2018, 9, 7277-7286]. However, the total relaxation time is dramatically shortened at low temperatures due to the direct, Raman, and quantum tunneling of magnetization processes. At low temperatures, the distribution of the probability of the possible relaxation pathways in this case favours QTM and the direct process over the Orbach process. To prolong the relaxation time, the compound was diluted with diamagnetic ZnII, producing 5 analogues of the general formula: CoxZn1-xBr2(pyridine)2 (x = 0.91, 0.67, 0.43, 0.24, and 0.06), confirmed to be a solid solution by independent experimental techniques (powder X-ray diffraction, infrared spectroscopy). The presence of diamagnetic ZnII ions changes the distribution of the dipolar interactions between the CoII centres in the material, which results in a monotonous change in the relaxation times, which in turn become longer with increasing dilutions, which is explained by the diminishing QTM contribution. The appearance of multiple relaxation processes is also observed for higher x, which is explained as the creation of multiple, separate frequency domains, as a result of the competition between QTM and the direct process contributions. We present a thorough, systematic study of magnetic dilution, which will hopefully be useful to estimate optimal dilutions in similar solid solutions.

10.
Chemistry ; 26(13): 2765, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017267

RESUMO

Invited for the cover of this issue is the group of Michal Rams at Jagiellonian University (Kraków, Poland) and colleagues at Christian-Albrechts-Universität zu Kiel, Friedrich-Schiller-Universität Jena, and Helmholtz-Zentrum Berlin. The image represents a 1D coordination polymer with Co(II) spins that are flipped by photons during an EPR experiment. Read the full text of the article at 10.1002/chem.201903924.

11.
Chemistry ; 26(13): 2837-2851, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31702081

RESUMO

The cobalt(II) in [Co(NCS)2 (4-methoxypyridine)2 ]n are linked by pairs of thiocyanate anions into linear chains. In contrast to a previous structure determination, two crystallographically independent cobalt(II) centers have been found to be present. In the antiferromagnetic state, below the critical temperature (Tc =3.94 K) and critical field (Hc =290 Oe), slow relaxations of the ferromagnetic chains are observed. They originate mainly from defects in the magnetic structure, which has been elucidated by micromagnetic Monte Carlo simulations and ac measurements using pristine and defect samples. The energy barriers of the relaxations are Δτ1 =44.9(5) K and Δτ2 =26.0(7) K for long and short spin chains, respectively. The spin excitation energy, measured by using frequency-domain EPR spectroscopy, is 19.1 cm-1 and shifts 0.1 cm-1 due to the magnetic ordering. Ab initio calculations revealed easy-axis anisotropy for both CoII centers, and also an exchange anisotropy Jxx /Jzz of 0.21. The XXZ anisotropic Heisenberg model (solved by using the density renormalization matrix group technique) was used to reconcile the specific heat, susceptibility, and EPR data.

12.
Chem Sci ; 9(36): 7277-7286, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30288249

RESUMO

The creation of functional magnetic materials for application in high-density memory storage or in the new field of molecular spintronics is a matter of widespread interest among the material research community. Herein, we describe a new approach that combines the qualities of single ion magnets, displaying slow magnetic relaxations, and the merits of polymers, being easy to process and widely used to produce thin films. Basing the idea on cobalt(ii) ions and pyridine-based single ion magnets, a new macromolecular magnetic material was obtained - a polymeric matrix of poly(4-vinylpyridine) (P4VP) cross-linked by a cobalt(ii) salt bound within it, effectively forming a network of single ion magnets, with field-induced magnetic relaxations preserved in both bulk and thin film forms. The binding of cobalt is confirmed by a series of methods, like secondary ion mass spectroscopy or high-resolution X-ray photoelectron spectroscopy. The magnetic relaxation times, up to 5 × 10-6 s, are controllable simply by dilution, making this new material a semi-solid solution. By this approach, a new path is formed to connect molecular magnetism and polymer science, showing that the easy polymer processing can be used in forming self-organizing functional magnetic thin films.

13.
Inorg Chem ; 57(6): 3305-3314, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29505252

RESUMO

Reaction of Ni(NCS)2 with 4-aminopyridine in different solvents leads to the formation of compounds with the compositions Ni(NCS)2(4-aminopyridine)4 (1), Ni(NCS)2(4-aminopyridine)2(H2O)2 (2), [Ni(NCS)2(4-aminopyridine)3(MeCN)]·MeCN (3), and [Ni(NCS)2(4-aminopyridine)2] n (5-LT). Compounds 1, 2, and 3 form discrete complexes, with octahedral metal coordination. In 5-LT the Ni cations are linked by single thiocyanate anions into chains, which are further connected into layers by half of the 4-aminopyridine coligands. Upon heating, 1 transforms into an isomer of 5-LT with a 1D structure (5-HT), that on further heating forms a more condensed chain compound [Ni(NCS)2(4-aminopyridine)] n (6) that shows a very unusual chain topology. If 3 is heated, a further compound with the composition Ni(NCS)2(4-aminopyridine)3 (4) is formed, which presumably is a dimer and which on further heating transforms into 6 via 5-HT as intermediate. Further investigations reveal that 5-LT and 5-HT are related by enantiotropism, with 5-LT being the thermodynamic stable form at room-temperature. Magnetic and specific heat measurements reveal ferromagnetic exchange through thiocyanate bridges and magnetic ordering due to antiferromagnetic interchain interactions at 5.30(5) K and 8.2(2) K for 5-LT and 6, respectively. Consecutive metamagnetic transitions in the spin ladder compound 6 are due to dipolar interchain interactions. A convenient formula for susceptibility of the ferromagnetic Heisenberg chain of isotropic spins S = 1 is proposed, based on numerical DMRG calculations, and used to determine exchange constants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...