Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484919

RESUMO

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Vitis , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Animais , Humanos , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Química Verde , Bactérias Gram-Negativas/efeitos dos fármacos , Bombyx , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Leveduras/efeitos dos fármacos
2.
RSC Adv ; 14(8): 5309-5318, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38343999

RESUMO

The utilization of waste materials for the synthesis of nanoparticles has gained significant attention due to its potential for waste valorization and contribution to circular economy. In this study, bimetallic nanoparticles were produced using extracts derived from Cannabis sativa and Vitis vinifera waste, focusing on their green synthesis and antimicrobial activity against Gram-negative bacteria, specifically several strains of Pseudomonas aeruginosa. The Vitis vinifera canes and post-extraction waste from Cannabis sativa were processed using an ethanol extraction method. The extract was then mixed with silver nitrate and tetrachloroauric acid solution at different reagent ratios to optimize the synthesis process. The resulting bimetallic nanoparticles (AgAuNPs) were characterized using UV-vis spectrophotometry, transmission electron microscopy, atomic absorption spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of the biosynthesized AgAuNPs was evaluated against various strains of Pseudomonas aeruginosa. The minimal inhibitory concentration (MIC) was determined using a microcultivation device, and the minimal bactericidal concentration (MBC) was determined through subsequent solid medium cultivation. Additionally, the minimal biofilm inhibitory concentration (MBIC) was assessed using a polystyrene microtiter plate as biofilm carrier and measured through an assay determining the metabolic activity of biofilm cells. The results demonstrated successful synthesis of bimetallic nanoparticles using the extracts from Cannabis sativa and Vitis vinifera waste. The AgAuNPs exhibited significant antimicrobial activity against the tested Pseudomonas aeruginosa strains, inhibiting their growth and biofilm formation. These findings highlight the potential of waste valorization and circular economy in nanoparticle production and their application as effective antimicrobial agents. This study contributes to the growing field of sustainable nanotechnology and provides insights into the utilization of plant waste extracts for the synthesis of bimetallic nanoparticles with antimicrobial properties. The findings support the development of eco-friendly and cost-effective approaches for nanoparticle production while addressing the challenges of waste management and combating microbial infections.

3.
PLoS One ; 17(8): e0272844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947573

RESUMO

Green methods have become vital for sustainable development of the scientific and commercial sphere; however, they can bring new challenges, including the need for detailed characterization and elucidation of efficacy of their products. In this study, green method of silver nanoparticles (AgNPs) production was employed using an extract from grapevine canes. The aim of the study was to contribute to the knowledge about biosynthesized AgNPs by focusing on elucidation of their antifungal efficiency based on their size and/or hypothesized synergy with bioactive substances from Vitis vinifera cane extract. The antifungal activity of AgNPs capped and stabilized with bioactive compounds was tested against the opportunistic pathogenic yeast Candida albicans. Two dispersions of nanoparticles with different morphology (characterized by SEM-in-STEM, DLS, UV-Vis, XRD, and AAS) were prepared by modification of reaction conditions suitable for economical production and their long-term stability monitored for six months was confirmed. The aims of the study included the comparison of the antifungal effect against suspension cells and biofilm of small monodisperse AgNPs with narrow size distribution and large polydisperse AgNPs. The hypothesis of synergistic interaction of biologically active molecules from V. vinifera extracts and AgNPs against both cell forms were tested. The interactions of all AgNPs dispersions with the cell surface and changes in cell morphology were imaged using SEM. All variants of AgNPs dispersions were found to be active against suspension and biofilm cells of C. albicans; nevertheless, surprisingly, larger polydisperse AgNPs were found to be more effective. Synergistic action of nanoparticles with biologically active extract compounds was proven for biofilm cells (MBIC80 20 mg/L of polydisperse AgNPs in extract), while isolated nanoparticles suspended in water were more active against suspension cells (MIC 20 mg/L of polydisperse AgNPs dispersed in water). Our results bring new insight into the economical production of AgNPs with defined characteristics, which were proven to target a specific mode of growth of significant pathogen C. albicans.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes , Candida albicans/metabolismo , Testes de Sensibilidade Microbiana , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Prata/metabolismo , Prata/farmacologia , Água/metabolismo
4.
Plants (Basel) ; 11(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161424

RESUMO

The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started exploring new methods of nanoparticle assembly with the aid of biological agents. In this study, ethanolic Vitis vinifera cane extract combined with silver nitrate was used to produce silver nanoparticles. These were subsequently characterized using UV-visible (UV-Vis) spectrometry, transmission electron microscopy, and dynamic light-scattering analysis. The antimicrobial activity of produced nanoparticles was tested against the planktonic cells of five strains of Gram-negative bacterium Pseudomonas aeruginosa (PAO1, ATCC 10145, ATCC 15442, DBM 3081, and DBM 3777). After that, bactericidal activity was assessed using solid medium cultivation. In the end, nanoparticles' inhibitory effect on adhering cells was analyzed by measuring changes in metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay-MTT). Our results confirmed that ethanolic Vitis vinifera cane extract is capable of mediating silver nanoparticle production; synthesis was conducted using 10% of extract and 1 mM of silver nitrate. The silver nanoparticles' Z-average was 68.2 d nm, and their zeta potential was -30.4 mV. These silver nanoparticles effectively inhibited planktonic cells of all P. aeruginosa strains in concentrations less than 5% v/v and inhibited biofilm formation in concentrations less than 6% v/v. Moreover, minimum bactericidal concentration was observed to be in the range of 10-16% v/v. According to the results in this study, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles exhibiting significant antimicrobial properties.

5.
Biotechnol Adv ; 58: 107905, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35031394

RESUMO

There is a growing interest in the potential and application of metal nanoparticles across many fields. A vast array of techniques for metal nanoparticle synthesis has been discovered; however, sustainability, cost-effectiveness, and environmental concerns favor the green biological approach, using various plant and microbial sources. This review describes the diversity in green methods for nanoparticle biosynthesis, antimicrobial properties of metal nanoparticles and their potential applications. Metal nanoparticle biosynthesis by extracts and solutions obtained from plants, bacteria, fungi and templates such as viruses are discussed. As biosynthesized nanoparticles have been proven to possess antibacterial, antifungal, and even antiviral properties, these are discussed in detail, with silver and gold nanoparticles as the most studied and with the highest potential for medical application. The focus on prospective antimicrobial applications of nanoparticles stems from the arising resistance of many serious pathogens to traditional disinfectants and antibiotics. Other fields for the application of biosynthesized nanoparticles are also stated briefly, such as in agriculture as pesticides, in wastewater treatment and bioremediation. Finally, the limitations and safety issues connected with widespread use of nanoparticles are discussed.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos , Anti-Infecciosos/farmacologia , Ouro , Química Verde , Extratos Vegetais , Plantas , Estudos Prospectivos
6.
Folia Microbiol (Praha) ; 63(3): 261-272, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28971316

RESUMO

Microbial adhesion to surfaces and the subsequent biofilm formation may result in contamination in food industry and in healthcare-associated infections and may significantly affect postoperative care. Some plants produce substances with antioxidant and antimicrobial properties that are able to inhibit the growth of food-borne pathogens. The aim of our study was to evaluate antimicrobial and anti-biofilm effect of baicalein, resveratrol, and pterostilbene on Candida albicans, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. We determined the minimum inhibitory concentrations (MIC), the minimum adhesion inhibitory concentration (MAIC), and the minimum biofilm eradication concentration (MBEC) by crystal violet and XTT determination. Resveratrol and pterostilbene have been shown to inhibit the formation of biofilms as well as to disrupt preformed biofilms. Our results suggest that resveratrol and pterostilbene appear potentially very useful to control and inhibit biofilm contaminations by Candida albicans, Staphylococcus epidermidis, and Escherichia coli in the food industry.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Flavanonas/farmacologia , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Resveratrol , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
7.
N Biotechnol ; 33(1): 144-52, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26455640

RESUMO

Zero-valent iron nanoparticles (nZVI) are a relatively new option for the treatment of contaminated soil and groundwater. However, because of their apparent toxicity, nZVI in high concentrations are known to interfere with many autochthonous microorganisms and, thus, impact their participation in the remediation process. The effect of two commercially available nZVI products, Nanofer 25 (non-stabilized) and Nanofer 25S (stabilized), was examined. Considerable toxicity to the soil yeast Trichosporon cutaneum was observed. Two chemically different humic substances (HSs) were studied as a possible protection agent that mitigates nZVI toxicity: oxidized oxyhumolite X6 and humic acid X3A. The effect of addition of HSs was studied in different phases of the experiment to establish the effect on cells and nZVI. SEM and TEM images revealed an ability of both types of nZVI and HSs to adsorb on surface of the cells. Changes in cell surface properties were also observed by zeta potential measurements. Our results indicate that HSs can act as an electrosteric barrier, which hinders mutual interaction between nZVI and treated cell. Thus, the application of HS seems to be a promising solution to mitigating the toxic action of nZVI.


Assuntos
Substâncias Húmicas/análise , Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Trichosporon/efeitos dos fármacos , Eletricidade Estática , Trichosporon/crescimento & desenvolvimento , Trichosporon/ultraestrutura
8.
Folia Microbiol (Praha) ; 61(4): 329-35, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26683688

RESUMO

Oxidative stress induced by zero-valent iron nanoparticles (nZVIs) was used to improve lipid accumulation in various oleaginous and non-oleginous yeasts-Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulospora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica. The highest lipid yields occurred at 9-13 mg/L nZVIs. Gas chromatography-mass spectrometry was used for the quantitative and qualitative analysis of the fatty acids. It showed an increasing abundance of polyunsaturated fatty acids, especially essential linoleic acid, in the presence of nZVIs. Our results suggest that nZVIs can be used to improve not only lipid production by oleaginous microorganisms but also the nutritional value of biosynthesized unsaturated fatty acids.


Assuntos
Ferro/metabolismo , Metabolismo dos Lipídeos , Nanopartículas/metabolismo , Estresse Oxidativo , Leveduras/efeitos dos fármacos , Citosol/química , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/metabolismo
9.
J Microbiol Methods ; 118: 106-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362224

RESUMO

Biofilms are often the cause of chronic human infections and contaminate industrial or medical equipment. The traditional approach has been to use increasing concentrations of antibiotics, but microorganisms rapidly develop multiresistance to them. Therefore, we investigated the use of natural substances as an alternative solution. The quantification of the biofilms based on the colonized areas was measured using a Cellavista automatic microscope equipped with image analysis software. Using the Cellavista device brings new possibilities for qualification and quantification of sessile cells. In our study, this feature was documented by exploring the antifungal/anti-biofilm activity of amphotericin B, baicalein, chitosan and usnic acid against yeast biofilm formation. The influence of these substances on the formation and eradication of opportunistic pathogenic yeasts Candida parapsilosis and Candida krusei biofilms was studied in 96-well polystyrene microtiter plates. While amphotericin B was not very efficient, the use of baicalein and chitosan, even in minimum inhibitory concentrations, was found to rapidly decrease the colonized areas in the wells. The usnic acid did not display any significant antibiofilm properties even at concentration 300µgml(-1). Our results propose that Cellavista is a promising tool for the study of yeast biofilm formation and the effects of antimicrobial agents.


Assuntos
Anti-Infecciosos/farmacologia , Benzofuranos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/fisiologia , Quitosana/farmacologia , Flavanonas/farmacologia , Anfotericina B/farmacologia , Humanos , Processamento de Imagem Assistida por Computador , Testes de Sensibilidade Microbiana , Microscopia/métodos
10.
Biotechnol Adv ; 33(6 Pt 2): 1272-6, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25773671

RESUMO

The unflagging interest in the surfactants of biological origin, representing ecological alternatives to their synthetic counterparts, has enhanced R&D effort both to produce their new types and to resolve the bottlenecks of their commercialization. In this context, the rhamnolipids, offering a relatively large scale of potential applications, variety of congeners, low toxicity as well as stability towards the extremes of environment, logically attract attention. In this connection, the current state of knowledge concerning these compound exploitation, biosynthesis control and non-genetic factors affecting both production yield and final rhamnolipid product is surveyed.


Assuntos
Materiais Biocompatíveis/química , Tensoativos/química , Glicolipídeos/química
11.
J Biotechnol ; 193: 45-51, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25433178

RESUMO

Rhamnolipids are naturally occurring biosurfactants with a wide range of potential commercial applications. As naturally derived products they present an ecological alternative to synthetic surfactants. The majority of described rhamnolipid productions are single strain Pseudomonas spp. cultivations. Here we report rhamnolipids producing bacteria Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa that were cultivated separately and as mixed populations. The ratio and composition of rhamnolipid congeners was determined by tandem mass spectrometry with negative electrospray ionization. Mono-rhamnolipid and di-rhamnolipid homologues containing one or two saturated or monounsaturated 3-hydroxy fatty acids were found in all strains. Physiochemical characterization of rhamnolipids was evaluated by the critical micelle concentration determination, the emulsification test, oil displacement test and phenanthrene solubilization. Critical micelle concentrations of rhamnolipids produced by both single strain and mixed cultures were found to be very low (10-63 mg/l) and to correspond with saturated/unsaturated fatty acid content of rhamnolipid homologues. The rhamnolipids produced by all strains effectively emulsified crude petroleum in comparison with synthetic surfactants Tween 80 and sodium dodecyl sulfate (SDS). Good performance of phenanthrene solubilization was exhibited by rhamnolipids from E. asburiae. The single strain and co-cultures cultivations were proposed as a possible way to produce rhamnolipid mixtures with a specific composition and different physiochemical properties, which could be exploited in bioremediation of various hydrophobic contaminants.


Assuntos
Acinetobacter calcoaceticus/metabolismo , Enterobacter/metabolismo , Glicolipídeos/química , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/metabolismo , Microbiologia Industrial , Fenantrenos/química , Fenantrenos/metabolismo , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , Tensoativos/metabolismo , Espectrometria de Massas em Tandem
12.
FEMS Microbiol Ecol ; 89(1): 1-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24754832

RESUMO

Genus Pseudomonas includes a large number of species that can be encountered in biotechnological processes as well as in the role of serious human or plant pathogens. Pseudomonads easily form biofilms on various types of surfaces. The biofilm phenotype is characterized by an increased resistance to environmental influences including resistance to antibiotics and other disinfectants, causing a number of problems in health care, food industry, and other areas. Considerable attention is therefore paid to the possibilities of eradication/destruction of pseudomonads biofilms both in terms of understanding the mechanisms of biofilm formation and at the level of finding suitable antibiofilm tools applicable in practice. The first part of this review is devoted to an overview of the regulatory mechanisms that are directly or indirectly involved in the formation of biofilm. The most effective approaches to suppressing the formation of biofilm that do not cause the development of resistance are based on the application of substances that interfere with the regulatory molecules or block the appropriate regulatory mechanisms involved in biofilm development by the cells. Pseudomonads biofilm formation is, similar to other microorganisms, a sophisticated process with many regulatory elements. The suppression of this process therefore also requires multiple antibiofilm tools.


Assuntos
Biofilmes , Pseudomonas/fisiologia , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Humanos , Fenótipo , Doenças das Plantas/microbiologia , Pseudomonas/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Microbiologia do Solo
13.
J Sep Sci ; 36(20): 3310-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23963893

RESUMO

LC with atmospheric pressure chemical ionization (ACPI) MS with RP and chiral phase was used for separation of triacylglycerols (TAGs) from yeasts of the genera Candida, Kluyveromyces, Rhodotorula, Saccharomyces, Torulospora, Trichosporon, and Yarrowia. Chiral LC-APCI-MS is based on using two columns in series packed with a 3,5-dimethylphenyl carbamate modified ß-cyclodextrin chiral phase. All regioisomers and enantiomers of TAGs containing one to five double bonds were separated. Molecular species of TAGs, i.e. regioisomers and enantiomers, were identified and quantified by MS/MS. Among the 94 identified TAGs, the most abundant were triolein, oleopalmitoleoolein, and dipalmitoleoolein. In strains producing palmitoleic acid in amounts >25% of total fatty acids (FAs), this acid, or unsaturated FA is bound in sn-1. In strains containing palmitoleic acid at 10-25% total FAs this acid is mainly bound in sn-3, saturated FA being bound in sn-1. Strains containing <10% palmitoleic acid form preferentially symmetrical TAGs.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Triglicerídeos/química , Leveduras/química , Cromatografia de Fase Reversa/métodos , Estereoisomerismo , Triglicerídeos/metabolismo , Leveduras/classificação , Leveduras/metabolismo
14.
Appl Microbiol Biotechnol ; 95(6): 1371-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22790609

RESUMO

Occurrence, biosynthesis, and biodegradation of pivalic acid and other compounds, having a quaternary carbon atom by different bacteria, are described. We have summarized the relevant data that have so far been published, presenting them in a graphical form, i.e., as biodegradation pathways including B12-dependent isomerization and desaturation that lead to the degradation of pivalic acid and similar compounds to products with other than quaternary carbon atoms, i.e., compounds whose catabolism is well known.


Assuntos
Bactérias/metabolismo , Vias Biossintéticas , Ácidos Pentanoicos/metabolismo , Bactérias/genética , Redes e Vias Metabólicas , Estrutura Molecular , Ácidos Pentanoicos/química
15.
N Biotechnol ; 30(1): 62-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22569140

RESUMO

Bioremediation processes based on biofilms are usually very effective. The presence of (bio)surfactants in such processes can increase bioavailability of hydrophobic pollutants in aqueous phase. However, surfactants can affect the biofilm as well as individual microbial cells in different ways. Biosurfactants produced by a microbial population can be involved in the final structure of biofilm. An external application of synthetic surfactants or 'foreign' biosurfactants often results in partial or complete destruction of the biofilm and their high concentrations also have a toxic effect on microbial cells. Finding a suitable surfactant and its concentration, which would minimize the negative effects mentioned above, would allow to construct effective bioremediation processes using the benefits of both the biofilm and the surfactant. In this context, G(+) bacterium Rhodococcus erythropolis, which has a wide potential for biodegradation of aromatic compounds, was studied. High surface hydrophobicity of its cells, given mainly by the presence of mycolic acids in the cell envelopes, allows formation of stable biofilms. Three synthetic surfactants (Spolapon AOS 146, Novanik 0633A, Tween 80) and rhamnolipid isolated from Pseudomonas aeruginosa were used. Changes in initial adhesion and biofilm formation caused by the surfactants were monitored in a flow cell equipped with hydrophilic/hydrophobic carriers and analyzed by image analysis.


Assuntos
Biofilmes/efeitos dos fármacos , Poluentes Ambientais/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Rhodococcus/fisiologia , Tensoativos/farmacologia , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental/efeitos dos fármacos , Contagem de Colônia Microbiana , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Micelas , Fenóis/metabolismo , Polietileno , Reologia/efeitos dos fármacos , Rhodococcus/efeitos dos fármacos , Rhodococcus/crescimento & desenvolvimento
16.
Phytochemistry ; 72(14-15): 1914-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21601894

RESUMO

Reversed phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/MS-APCI) was used to identify and quantify triacylglycerols (TAGs) having odd-numbered ω-phenylalkanoic acids from seeds of the flower plant Dracunculus vulgaris, and TAGs from the bacterium Rhodococcus erythropolis prepared by precursor directed biosynthesis from phenylalanine and having the corresponding even-numbered ω-phenylalkanoic acids. Model compounds, which are not commercially available, were prepared by organic synthesis and this allowed us to extend the number of identified natural TAGs to nearly 140 molecular species. Both synthetic and natural compounds containing ω-phenylalkanoic acids were found to have antioxidant and free radical scavenging properties.


Assuntos
Araceae/química , Ácidos Graxos/química , Sequestradores de Radicais Livres/química , Rhodococcus/química , Triglicerídeos/química , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/isolamento & purificação , Espectrometria de Massas , Sementes/química , Triglicerídeos/análise , Triglicerídeos/isolamento & purificação
17.
Lipids ; 45(8): 743-56, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20635225

RESUMO

Reversed phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/MS-APCI) was used to analyze both synthetic triacylglycerols (TAG) having 1-3 branched fatty acids (FA) in the molecule, and natural TAG prepared by precursor directed biosynthesis from valine, leucine and isoleucine and the corresponding branched short-chain acids in cultivations of Rhodococcus erythropolis. The technique made it possible to identify and quantify TAG differing in a single branched-chain FA. Altogether 11 TAG were synthesized, out of which 8 were synthesized stereospecifically. Branched- and straight-chain-TAG were separated and identified while TAG differing only in iso or anteiso FA could not be separated. The APCI mass spectra of iso-, anteiso- and straight-chain TAG were completely identical. The natural material was found to contain 19 TAG having at least one branched FA. Cultivation on six different substrates showed, apart from the presumed and common incorporation of precursors to iso-even, iso-odd and anteiso FA, also some unusual features such as an increase in the content of odd-FA after the addition of Val (attributed to catabolism of Val to propionate) or the appearance of branched monounsaturated FA. The two-sample paired t test, when applied to the TAG, showed that only the pair Val and isobutyrate differ in incorporation into FA--see, e.g. proportions of M/M/O and brM/brM/O (1.2:1.2 and 1.9:1.2, respectively). Also, incorporation of Val (isobutyrate) yielded only TAG having two branched FA in the molecule, whereas Leu and Ile (isovalerate and 2-methyl-butyrate) gave only TAG with a single branched FA in the molecule.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Rhodococcus/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-14524696

RESUMO

A column reactor was designed and used to simulate conditions affecting the bioremediations of petroleum hydrocarbons. The work illustratively describes the aerobic (model) clean-up of soil samples enabling to predict the efficiency of a technology installed in parallel on contaminated former airport. The data showing the performance of thus precharacterized technology are presented.


Assuntos
Hidrocarbonetos/isolamento & purificação , Petróleo , Poluentes do Solo/isolamento & purificação , Poluentes da Água/isolamento & purificação , Bactérias Aeróbias/fisiologia , Biodegradação Ambiental , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...