Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 194: 345-360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463636

RESUMO

Global climate change will impact crops and grasslands, affecting growth and yield. However, is not clear how the combination of warming and increased atmospheric carbon dioxide concentrations ([CO2]) will affect the photosystem II (PSII) photochemistry and the photosynthetic tissue photoinhibition and photoprotection on tropical forages. Here, we evaluated the effects of elevated [CO2] (∼600 µmol mol-1) and warming (+2 °C increase temperature) on the photochemistry of photosystem II and the photoprotection strategies of a tropical C4 forage Panicum maximum Jacq. grown in a Trop-T-FACE facility under well-watered conditions without nutrient limitation. Analysis of the maximum photochemical efficiency of PSII (Fv/Fm), the effective PSII quantum yield Y(II), the quantum yield of regulated energy dissipation Y(NPQ), the quantum yield of non-regulated energy dissipation Y(NO), and the malondialdehyde (MDA) contents in leaves revealed that the photosynthetic apparatus of plants did not suffer photoinhibitory damage, and plants did not increase lipid peroxidation in response to warming and [CO2] enrichment. Plants under warming treatment showed a 12% higher chlorophyll contents and a 58% decrease in α-tocopherol contents. In contrast, carotenoid composition (zeaxanthin and ß-carotene) and ascorbate levels were not altered by elevated [CO2] and warming. The elevated temperature increased both net photosynthesis rate and aboveground biomass but elevated [CO2] increased only net photosynthesis. Adjustments in chlorophyll, de-epoxidation state of the xanthophylls cycle, and tocopherol contents suggest leaves of P. maximum can acclimate to 2 °C warmer temperature and elevated [CO2] when plants are grown with enough water and nutrients during tropical autumn-winter season.


Assuntos
Dióxido de Carbono , Complexo de Proteína do Fotossistema II , Dióxido de Carbono/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese , Clorofila , Folhas de Planta/metabolismo
2.
Plant Physiol Biochem ; 127: 200-210, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29609176

RESUMO

Tocopherols are lipid-soluble antioxidants that contribute to plant resistance to abiotic stresses. However, it is still unknown to what extent alterations in tocopherol composition can affect the plant response to biotic stresses. The response to bacterial and fungal attack of the vte1 mutant of Arabidopsis thaliana, which lacks both α- and γ-tocopherol, was compared to that of the vte4 mutant (which lacks α- but accumulates γ-tocopherol) and the wild type (with accumulates α-tocopherol in leaves). Both mutants exhibited similar kinetics of cell death and resistance in response to Pseudomonas syringae. In contrast, both mutants exhibited delayed resistance when infected with Botrytis cinerea. Lipid and hormonal profiling was employed with the aim of assessing the underlying cause of this differential phenotype. Although an altered tocopherol composition in both mutants strongly influenced fatty acid composition, and strongly altered jasmonic acid and cytokinin contents upon infection with B. cinerea, differences between genotypes in these phytohormones were observed during late stages of infection only. By contrast, genotype-related effects on lipid peroxidation, as indicated by malondialdehyde accumulation, were observed early upon infection with B. cinerea. We conclude that an altered tocopherol composition in chloroplasts may negatively influence the plant response to biotic stress in Arabidopsis thaliana through changes in the membrane fatty acid composition, enhanced lipid peroxidation and delayed defence activation when challenged with B. cinerea.


Assuntos
Arabidopsis , Botrytis , Cloroplastos/metabolismo , Resistência à Doença , Tocoferóis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia
3.
Phytochemistry ; 108: 9-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25308762

RESUMO

Plastochromanol-8 (PC-8) is an antioxidant that, together with tocopherols and tocotrienols, belongs to the group of tocochromanols. Plastochromanol-8 has been found to occur in several plant species, including mosses, and lichens. PC-8 is found in seeds, leaves and other organs of higher plants. In leaves, PC-8 is restricted to chloroplasts. The identification of tocopherol cyclase (VTE1) as the key enzyme in the biosynthesis of PC-8 suggests that plastoglobules are the primary site of its biosynthesis. Other enzymes related with PC-8 biosynthesis in plastoglobules include: NDC1 and the ABC1-like kinase ABC1K3. The antioxidant properties of PC-8 are similar to those of other chloroplastic antioxidants in polar solvents but considerably they are enhanced in hydrophobic environments, suggesting that the unsaturated side chain performs some quenching activity. As a result of a non-enzymatic reaction, singlet oxygen can oxidize any of the 8 double bonds in the side chain of PC-8, giving at least eight hydroxy-PC-8 isomers. This review summarizes current evidence of a widespread distribution of PC-8 in photosynthetic organisms, as well as the contribution of PC-8 to the pool of lipid-soluble antioxidants in both leaves and seeds.


Assuntos
Cromanos/química , Vitamina E/análogos & derivados , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cromanos/metabolismo , Hevea/química , Transferases Intramoleculares/metabolismo , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Folhas de Planta/química , Sementes/química , Vitamina E/química , Vitamina E/metabolismo
4.
Planta ; 240(6): 1299-317, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156490

RESUMO

Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes-Cakile maritima and Thellungiella salsuginea--and a glycophyte--Arabidopsis thaliana- to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.


Assuntos
Brassicaceae/metabolismo , Osmose , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Salinidade , Plantas Tolerantes a Sal/metabolismo , Transdução de Sinais , Ácido Ascórbico/metabolismo , Biomassa , Brassicaceae/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Íons , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Oxirredução , Desenvolvimento Vegetal , Potássio/metabolismo , Prolina/metabolismo , Plantas Tolerantes a Sal/genética , Sódio/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Água
5.
Planta ; 239(4): 817-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24389672

RESUMO

Although oxidative stress has been previously described in plants exposed to uranium (U), some uncertainty remains about the role of glutathione and tocopherol availability in the different responsiveness of plants to photo-oxidative damage. Moreover, in most cases, little consideration is given to the role of water transport in shoot heavy metal accumulation. Here, we investigated the effect of uranyl nitrate exposure (50 µM) on PSII and parameters involved in water transport (leaf transpiration and aquaporin gene expression) of Arabidopsis wild type (WT) and mutant plants that are deficient in tocopherol (vte1: null α/γ-tocopherol and vte4: null α-tocopherol) and glutathione biosynthesis (high content: cad1.3 and low content: cad2.1). We show how U exposure induced photosynthetic inhibition that entailed an electron sink/source imbalance that caused PSII photoinhibition in the mutants. The WT was the only line where U did not damage PSII. The increase in energy thermal dissipation observed in all the plants exposed to U did not avoid photo-oxidative damage of mutants. The maintenance of control of glutathione and malondialdehyde contents probed to be target points for the overcoming of photoinhibition in the WT. The relationship between leaf U content and leaf transpiration confirmed the relevance of water transport in heavy metals partitioning and accumulation in leaves, with the consequent implication of susceptibility to oxidative stress.


Assuntos
Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Urânio/farmacologia , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Luz , Mutação , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos , Tocoferóis/metabolismo
6.
J Exp Bot ; 65(1): 287-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24218328

RESUMO

The question of whether or not perennial plants senesce at the organism level remains unresolved. The aim of this study was to unravel whether or not plant age can influence the production and composition of seeds. Flower and seed production was examined in 3-, 8-, and 13-year-old Cistus albidus plants growing in experimental plots corresponding to the F2, F1, and F0 generations of the same population. Furthermore, the phytohormone, fatty acid, and vitamin E content of the seeds was evaluated, and their viability was examined. Whether or not age-related differences in seed quality were observed in a natural population in the Montserrat Mountains (NE Spain) was also tested. The results indicate that under controlled conditions, the oldest plants not only produced fewer flowers, but also had higher rates of embryo abortion in mature seeds. However, germination capacity was not negatively affected by plant ageing. Seeds of the oldest plants contained significantly higher salicylic acid, jasmonic acid, and vitamin E levels compared with those from younger plants. Despite vigour (in terms of plant growth) being severely reduced due to harsh environmental conditions in the natural population, the oldest individuals produced seeds with no decline in viability. Seed biomass was instead positively correlated with seed viability. In conclusion, increased plant size may explain the loss of seed viability in the experimental field, but older smaller individuals in natural populations can escape senescence in terms of seed viability loss.


Assuntos
Cistus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/fisiologia , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Biomassa , Cistus/crescimento & desenvolvimento , Ciclopentanos/análise , Ciclopentanos/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Germinação , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Ácido Salicílico/análise , Ácido Salicílico/metabolismo , Sementes/crescimento & desenvolvimento , Espanha , Fatores de Tempo , Vitamina E/análise , Vitamina E/metabolismo
7.
Phytochemistry ; 95: 207-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23920227

RESUMO

Tocopherols are thought to prevent oxidative damage during seed quiescence and dormancy in all angiosperms. However, several monocot species accumulate tocotrienols in seeds and their role remains elusive. Here, we aimed to unravel the distribution of tocopherols and tocotrienols in seeds of the Arecaceae family, to examine possible trends of vitamin E accumulation within different clades of the same family. We examined the tocopherol and tocotrienol content in seeds of 84 species. Furthermore, we evaluated the vitamin E composition of the seed coat, endosperm and embryo of seeds from 6 species, to determine possible tissue-specific functions of particular vitamin E forms. While seeds of 98.8% (83 out of 84) of the species accumulated tocotrienols, only 58.3% (49 out of 84) accumulated tocopherols. The presence of tocopherols did not follow a clear evolutionary trend, and appeared randomly in some clades only. In addition, the tissue-specific location of vitamin E in seeds revealed that the embryo contains mostly α-tocopherol (in seed tocopherol-accumulating species) or α-tocotrienol (in seed tocopherol-deficient species). However, some species such as Socratea exorrhiza mostly accumulate ß-tocotrienol, and Parajubaea torallyi accumulates a mixture of tocopherols and tocotrienols in the embryo. This suggests that tocotrienols can play a similar protective role to that exerted by tocopherols in seeds, at least in some species of the Arecaceae family. We conclude that tocotrienol, rather than tocopherol, accumulation is a conserved trait in seeds of the Arecaceae family.


Assuntos
Arecaceae/química , Sementes/química , Tocotrienóis/análise , Vitamina E/análogos & derivados , alfa-Tocoferol/análise , Vitamina E/análise
8.
Plant Signal Behav ; 8(2): e23136, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299430

RESUMO

Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Hidroponia , Cloreto de Sódio/farmacologia , Tocoferóis/metabolismo , Aminoácidos Cíclicos , Arabidopsis/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
9.
J Plant Physiol ; 169(4): 360-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22209220

RESUMO

To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Nucleares/genética , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Cloreto de Sódio/toxicidade , Fatores de Transcrição/genética , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Biomassa , Clorofila/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Malondialdeído/metabolismo , Mutação , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Água/metabolismo
10.
Plant Cell Physiol ; 52(8): 1389-400, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21719428

RESUMO

Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Mutação/genética , alfa-Tocoferol/metabolismo , gama-Tocoferol/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Desidratação , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Metiltransferases/genética , Oxilipinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Tempo
11.
Physiol Plant ; 142(2): 128-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21288246

RESUMO

Early changes in physiological and oxidative status induced by salt stress were monitored in two Brassicaceae plants differing in their tolerance to salinity, Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Growth response and antioxidant defense of C. maritima under 400 mM NaCl were compared with those of A. thaliana exposed to 100 mM NaCl. Salinity induced early growth reduction that is less pronounced in C. maritima than in A. thaliana. Maximum hydrogen peroxide (H2O2) level occurred in the leaves of both species 4 h after the onset of salt treatment. A rapid decline in H2O2 concentration was observed thereafter in C. maritima, whereas it remained high in A. thaliana. Correlatively, superoxide dismutase, catalase and peroxidase activities increased at 4 h of treatment in C. maritima and decreased thereafter. However, the activity of these enzymes remained higher in treated plants than that in controls, regardless of the duration of treatment, in A. thaliana. The concentrations of malondialdehyde (MDA) reached maximum values at 24 h of salt stress in both species. Again, MDA levels decreased later in C. maritima, but remained high in A. thaliana. The contents of α-tocopherol remained constant during salt stress in C. maritima and decreased during the first 24 h of salt stress and then remained low in A. thaliana. The results clearly showed that C. maritima, in contrast to A. thaliana, can rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. This may explain, at least partially, the difference in salt tolerance between halophytes and glycophytes.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/fisiologia , Catalase/efeitos dos fármacos , Catalase/metabolismo , Cátions/análise , Cátions/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/análise , Malondialdeído/metabolismo , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Tocoferóis/análise , Tocoferóis/metabolismo
12.
FEBS Lett ; 583(6): 992-6, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19258016

RESUMO

Tocopherol biosynthesis was investigated in ein3-1, etr1-1 and eto1-1 mutants of Arabidopsis thaliana, which show a defect in ethylene signaling, perception and over-produce ethylene, respectively. A mutation in the EIN3 gene delayed the water-stress related increase in alpha-tocopherol and caused a reduction in the levels of this antioxidant by ca. 30% compared to the wild type. In contrast to the wild type and ein3-1 mutants, both etr1-1 and eto1-1 mutants showed a sharp (up to 5-fold) increase in alpha-tocopherol levels during leaf aging. It is concluded that ethylene perception and signaling may be involved in the regulation of tocopherol biosynthesis during water stress and leaf aging.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/farmacologia , Transdução de Sinais/fisiologia , Tocoferóis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Desidratação/genética , Desidratação/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Nucleares/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Fatores de Transcrição/genética
13.
J Plant Physiol ; 166(2): 136-45, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18455260

RESUMO

The goal of the present research was to obtain new insights into the mechanisms underlying drought stress resistance in plants. Specifically, we evaluated changes in the expression of genes encoding enzymes involved in isoprenoid biosynthesis, together with the levels of the corresponding metabolites (chlorophylls, carotenoids, tocopherols and abscisic acid), in a drought-resistant Mediterranean shrub, Cistus creticus grown under Mediterranean field conditions. Summer drought led to reductions in the relative leaf water content (RWC) by 25%, but did not alter the maximum efficiency of PSII, indicating the absence of damage to the photosynthetic apparatus. While the expression of genes encoding C. creticus chlorophyll a oxygenase/chlorophyll b synthase (CAO) and phytoene synthase (PSY) were not affected by water deficit, the genes encoding homogentisate phytyl-transferase (HPT) and 9-cis-epoxycarotenoid dioxygenase (NCED) were induced in water-stressed (WS) plants. Drought-induced changes in gene expression were observed at early stages of drought and were strongly correlated with levels of the corresponding metabolites, with simultaneous increases in abscisic acid and alpha-tocopherol levels of up to 4-fold and 62%, respectively. Furthermore, alpha-tocopherol levels were strongly positively correlated with abscisic acid contents, but not with the levels of jasmonic acid and salicylic acid. We conclude that the abscisic acid and tocopherol biosynthetic pathway may be regulated at the transcript level in WS C. creticus plants, and that the genes encoding HPT and NCED may play a key role in the drought stress resistance of this Mediterranean shrub by modulating abscisic acid and tocopherol biosynthesis.


Assuntos
Cistus/genética , Cistus/fisiologia , Secas , Terpenos/metabolismo , Água/metabolismo , Ácido Abscísico/biossíntese , Carotenoides/biossíntese , Clorofila/biossíntese , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Região do Mediterrâneo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chuva , Ácido Salicílico/metabolismo , Estresse Fisiológico , Tocoferóis/metabolismo
14.
J Photochem Photobiol B ; 85(3): 191-7, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16962788

RESUMO

Acclimation of photosynthetic light reactions to high light requires adjustments in photosystem II (PSII) photochemistry and may be affected by environmental stresses, such as water deficit. In this study, we examined the effects of this stress on PSII photochemistry and photoprotection, with an emphasis on the role of carotenoids and tocopherols, during acclimation of lyreleaf sage (Salvia lyrata L.) plants to high light. Violaxanthin was rapidly converted to zeaxanthin under high light, the de-epoxidation state of the xanthophyll cycle reaching maximum levels of 0.97 after 10 days of high light exposure. Under a higher photoprotective demand caused by water deficit, plants showed significant decreases in beta-carotene and enhanced oxidation of alpha-tocopherol to alpha-tocopherol quinone, which was followed by decreases in the F(v)/F(m) ratio. The levels of beta-carotene decreased more in water-stressed than irrigated plants during acclimation to high light, being particularly degraded (up to 73%) after 14 days of water deficit. Tocopherol levels increased significantly during acclimation to high light, particularly under water deficit, which caused 6.6- and 10-fold increases in alpha-tocopherol and alpha-tocopherol quinone, respectively. We conclude that when xanthophyll cycle-dependent excess energy dissipation could not afford further protection during high light acclimation and the photoprotective demand increased in lyreleaf sage plants by water deficit, enhanced oxidation of alpha-tocopherol and beta-carotene occurred. As stress persisted, enhanced formation of reactive oxygen species might ultimately damage the PSII, as indicated by the reductions in the F(v)/F(m) ratio.


Assuntos
Adaptação Fisiológica/fisiologia , Desidratação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , alfa-Tocoferol/metabolismo , Fotobiologia , Folhas de Planta/metabolismo , Salvia/metabolismo , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...