Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 953: 175802, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295763

RESUMO

Antipsychotic drugs of different chemical/pharmacological families show preferential dopamine (DA) D2 receptor (D2-R) vs. D1 receptor (D1-R) affinity, with the exception of clozapine, the gold standard of schizophrenia treatment, which shows a comparable affinity for both DA receptors. Here, we examined the ability of Lu AF35700 (preferential D1-R>D2-R antagonist), to reverse the alterations in thalamo-cortical activity induced by phencyclidine (PCP), used as a pharmacological model of schizophrenia. Lu AF35700 reversed the PCP-induced alteration of neuronal discharge and low frequency oscillation (LFO, 0.15-4 Hz) in thalamo-cortical networks. Likewise, Lu AF35700 prevented the increased c-fos mRNA expression induced by PCP in thalamo-cortical regions of awake rats. We next examined the contribution of D1-R and D2-R to the antipsychotic reversal of PCP effects. The D2-R antagonist haloperidol reversed PCP effects on thalamic discharge rate and LFO. Remarkably, the combination of sub-effective doses of haloperidol and SCH-23390 (DA D1-R antagonist) fully reversed the PCP-induced fall in thalamo-cortical LFO. However, unlike with haloperidol, SCH-23390 elicited different degrees of potentiation of the effects of low clozapine and Lu AF35700 doses. Overall, the present data support a synergistic interaction between both DA receptors to reverse the PCP-induced alterations of oscillatory activity in thalamo-cortical networks, possibly due to their simultaneous blockade in direct and indirect pathways of basal ganglia. The mild potentiation induced by SCH-23390 in the case of clozapine and Lu AF35700 suggests that, at effective doses, these agents reverse PCP effects through the simultaneous blockade of both DA receptors.


Assuntos
Antipsicóticos , Clozapina , Ratos , Animais , Fenciclidina/farmacologia , Clozapina/farmacologia , Haloperidol/farmacologia , Dopamina , Antipsicóticos/farmacologia , Antagonistas de Dopamina/farmacologia , Receptores de Dopamina D1
2.
Cereb Cortex ; 32(14): 3000-3013, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848862

RESUMO

The infralimbic (IL) cortex is the rodent equivalent of human ventral anterior cingulate cortex (vACC), which plays a key role in the pathophysiology and treatment of major depressive disorder (MDD). The modulation of glutamatergic neurotransmission in IL [but not in the adjacent prelimbic (PrL) cortex] evokes antidepressant-like or depressive-like behaviors, associated with changes in serotonin (5-HT) function, highlighting the relevance of glutamate/serotonin interactions in IL for emotional control. 5-HT modulates neuronal activity in PrL and cingulate (Cg) cortex but its effects in IL are largely unknown. We therefore compared the in vivo effects of 5-HT on pyramidal neuron activity in IL (n = 61) and PrL (n = 50) of anesthetized rats. IL pyramidal neurons were more responsive to physiological dorsal raphe stimulation (0.9 Hz) than PrL neurons (84% vs. 64%, respectively) and were inhibited to a greater extent (64% vs. 36%, respectively). Orthodromic activations (8% in PrL) were absent in IL, whereas biphasic responses were similar (20%) in both areas. Excitations were mediated by 5-HT2A-R activation, whereas inhibitions involved 3 different components: 5-HT1A-R, 5-HT3-R and GABAA-R, respectively. The remarkable inhibitory action of 5-HT in IL suggests that 5-HT-enhancing drugs may exert their antidepressant action by normalizing a glutamatergic hyperactivity in the vACC of MDD patients.


Assuntos
Transtorno Depressivo Maior , Serotonina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Cerebral , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Células Piramidais/fisiologia , Ratos
3.
Int J Neuropsychopharmacol ; 25(5): 425-431, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35022720

RESUMO

Schizophrenia is a severe mental disorder featuring psychotic, depressive, and cognitive alterations. Current antipsychotic drugs preferentially target dopamine D2-R and/or serotonergic 5-HT2A/1A-R. They partly alleviate psychotic symptoms but fail to treat negative symptoms and cognitive deficits. Here we report on the putative antipsychotic activity of (1-[(3-fluorophenyl)sulfonyl]-4-(piperazin-1-yl)-1H-pyrrolo[3,2-c]quinoline dihydrochloride) (FPPQ), a dual serotonin 5-HT3-R/5-HT6-R antagonist endowed with pro-cognitive properties. FPPQ fully reversed phencyclidine-induced decrease of low-frequency oscillations in the medial prefrontal cortex of anaesthetized rats, a fingerprint of antipsychotic activity. This effect was mimicked by the combined administration of the 5-HT3-R and 5-HT6-R antagonists ondansetron and SB-399 885, respectively, but not by either drug alone. In freely moving rats, FPPQ countered phencyclidine-induced hyperlocomotion and augmentation of gamma and high-frequency oscillations in medial prefrontal cortex, dorsal hippocampus, and nucleus accumbens. Overall, this supports that simultaneous blockade of 5-HT3R and 5-HT6-R-like that induced by FPPQ-can be a new target in antipsychotic drug development.


Assuntos
Antipsicóticos , Encéfalo , Fenciclidina , Quinolinas , Antagonistas da Serotonina , Animais , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Quinolinas/farmacologia , Ratos , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia
4.
Biomedicines ; 9(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356846

RESUMO

Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala-hippocampal-prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent-the subgenual cingulate cortex-constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala-hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.

5.
Neuropharmacology ; 178: 108238, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750446

RESUMO

Major depressive disorder (MDD) is a chronic and disabling psychiatric disorder characterized by a wide range of signs/symptoms, including cognitive dysfunction. Vortioxetine (VOR) is a multimodal antidepressant drug with pro-cognitive actions in animal models and MDD patients. The VOR-mediated blockade of 5-HT3-R in a subpopulation of GABA interneurons enhances pyramidal neuron activity in rat medial prefrontal cortex, an effect possibly underlying its pro-cognitive action. Brain oscillations are involved in regulation of cognitive function. We therefore examined VOR effects on oscillatory activity in four brain areas of freely-moving rats (prelimbic cortex, PrL; nucleus accumbens, NAc; dorsal hippocampus, dHPC; paraventricular thalamic nucleus, PVA), in standard and in serotonin-depleted rats showing recognition memory deficits. 4-chloro-dl-phenylalanine (pCPA) markedly reduced low frequency oscillations (LFO, mainly 1 Hz oscillations) and enhanced theta oscillations in PrL and NAc. It also reduced gamma and high frequency oscillations (HFO) in PVA. Subchronic VOR and escitalopram (ESC) treatments had little effect on oscillatory activity in standard rats. However, VOR -but not ESC- prevented recognition memory deficits in 5-HT-depleted rats, and normalized LFO and theta powers in PrL and NAc. In parallel, VOR -but not ESC- prevented the deficit in PrL-dHPC gamma coherence, but not the decrease in gamma and HFO powers in PVA. Overall, this supports a prominent role of serotonergic neurotransmission on brain oscillatory activity, particularly in cortico-striatal pathways linked to short-term recognition memory. Further, VOR prevented pCPA-induced cognitive deficits by normalizing oscillatory activity at lower frequencies in the PrL-NAc pathway, also normalizing the PrL-dHPC coherence at gamma frequencies.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Citalopram/administração & dosagem , Transtornos da Memória/metabolismo , Serotonina/metabolismo , Vortioxetina/administração & dosagem , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Ritmo Circadiano/fisiologia , Fenclonina/toxicidade , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT3 de Serotonina/administração & dosagem , Antagonistas da Serotonina/toxicidade
6.
Neuropharmacology ; 158: 107745, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445017

RESUMO

Non-competitive N-methyl-d-aspartate receptor antagonists mimic schizophrenia symptoms and produce immediate and persistent antidepressant effects. We investigated the effects of ketamine and phencyclidine (PCP) on thalamo-cortical network activity in awake, freely-moving male Wistar rats to gain new insight into the neuronal populations and brain circuits involved in the effects of NMDA-R antagonists. Single unit and local field potential (LFP) recordings were conducted in mediodorsal/centromedial thalamus and in medial prefrontal cortex (mPFC) using microelectrode arrays. Ketamine and PCP moderately increased the discharge rates of principal neurons in both areas while not attenuating the discharge of mPFC GABAergic interneurons. They also strongly affected LFP activity, reducing beta power and increasing that of gamma and high-frequency oscillation bands. These effects were short-lasting following the rapid pharmacokinetic profile of the drugs, and consequently were not present at 24 h after ketamine administration. The temporal profile of both drugs was remarkably different, with ketamine effects peaking earlier than PCP effects. Although this study is compatible with the glutamate hypothesis for fast-acting antidepressant action, it does not support a local disinhibition mechanism as the source for the increased pyramidal neuron activity in mPFC. The short-lasting increase in thalamo-cortical activity is likely associated with the rapid psychotomimetic action of both agents but could also be part of a cascade of events ultimately leading to the persistent antidepressant effects of ketamine. Changes in spectral contents of high-frequency bands by the drugs show potential as translational biomarkers for target engagement of NMDA-R modulators.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Ketamina/farmacologia , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Neurônios GABAérgicos/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tálamo , Vigília
7.
Neuropharmacology ; 137: 13-23, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702122

RESUMO

BACKGROUND: Sub-anesthetic doses of the non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonist ketamine evoke transient psychotomimetic effects, followed by persistent antidepressant effects in treatment-resistant depressed patients and rodents through still poorly understood mechanisms. Since phencyclidine (PCP) disinhibits thalamo-cortical networks by blocking NMDA-Rs on GABAergic neurons of the reticular thalamic nucleus (RtN), we examined ketamine's actions in the same areas. METHODS: Single units and local field potentials were recorded in chloral hydrate anesthetized male Wistar rats. The effects of cumulative ketamine doses (0.25-5 mg/kg, i.v.) on neuronal discharge and oscillatory activity were examined in RtN, mediodorsal and centromedial (MD/CM) thalamic nuclei, and layer VI of the medial prefrontal cortex (mPFC). RESULTS: Ketamine (1, 2 and 5 mg/kg, i.v.) significantly decreased the discharge of MD/CM, RtN and layer VI mPFC pyramidal neurons. Simultaneously, ketamine decreased the power of low frequency oscillations in all areas examined and increased gamma oscillations in mPFC and MD/CM. Lower ketamine doses (0.25 and 0.5 mg/kg, i.v.) were ineffective. CONCLUSIONS: As observed for PCP, ketamine markedly inhibited the activity of RtN neurons. However, unlike PCP, this effect did not translate into a disinhibition of MD/CM and mPFC excitatory neurons, possibly due to a more potent and simultaneous blockade of NMDA-Rs by ketamine in MD/CM and mPFC neurons. Hence, the present in vivo results show that ketamine evokes an early transient inhibition of neuronal discharge in thalamo-cortical networks, following its rapid pharmacokinetics, which is likely associated to its psychotomimetic effects. The prolonged increase in gamma oscillations may underlie its antidepressant action.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Núcleos Talâmicos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/sangue , Ritmo Gama/fisiologia , Ketamina/sangue , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/fisiologia , Fenciclidina/farmacologia , Córtex Pré-Frontal/fisiologia , Ratos Wistar , Núcleos Talâmicos/fisiologia
8.
Neuropharmacology ; 142: 219-230, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29221792

RESUMO

5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT1A/5-HT2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT1A and 5-HT2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT2A-R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT1A-R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.


Assuntos
Alucinógenos/farmacologia , Metoxidimetiltriptaminas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Tálamo/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Tálamo/metabolismo , Córtex Visual/metabolismo
9.
Brain Stimul ; 11(1): 222-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29074339

RESUMO

BACKGROUND: Deep Brain Stimulation (DBS) of the subgenual cingulate cortex (SCC) is a promising therapeutic alternative to treat resistant major depressive disorder. In preclinical studies, DBS of the ventromedial prefrontal cortex (vmPFC, the rodent SCC correlate) provokes an antidepressant-like effect, along with changes in noradrenaline levels at the site of stimulation. Hence, DBS appears to activate the noradrenergic-locus coeruleus (LC) system. OBJECTIVE/HYPOTHESIS: The aim of this study was to evaluate the effect of vmPFC DBS on the electrical activity of noradrenergic LC neurons, cortical oscillations and coherence between both brain areas in male rats. METHODS: The antidepressant-like effect of vmPFC DBS was evaluated through the forced swimming test. Tonic and evoked activity of LC neurons, LC activity of alpha2-adrenoceptors, local field potentials from LC and electrocorticogram signals were studied after DBS by electrophysiological recordings in anaesthetized rats. The effect of DBS on tyrosine hydroxylase (TH), noradrenaline transporters (NAT), phosphorylation of the extracellular signal-regulated kinase (ERK) and corticotropin releasing factor (CRF) expression in the LC were measured by western blot assays. RESULTS: DBS induced an antidepressant-like effect increasing climbing behaviour in the FST that was accompanied by a robust increase of TH expression in the rat LC. The tonic and evoked activity of LC neurons was enhanced by DBS, which impaired alpha2-adrenoceptors activity. DBS also promoted an increase in slow LC oscillations, as well as a shift in LC-cortical coherence. CONCLUSION: DBS of the vmPFC appears to affect the LC, producing changes that may underlie its antidepressant-like effects.


Assuntos
Estimulação Encefálica Profunda , Depressão/terapia , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Norepinefrina/metabolismo , Córtex Pré-Frontal/fisiologia , Animais , Transtorno Depressivo Maior/terapia , Giro do Cíngulo/fisiologia , Masculino , Ratos , Ratos Wistar , Natação
10.
Eur Neuropsychopharmacol ; 28(4): 445-456, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29174531

RESUMO

Major depressive disorder (MDD) is a severe psychiatric syndrome with high prevalence and socioeconomic impact. Current antidepressant treatments are based on the blockade of serotonin (5-hydroxytryptamine, 5-HT) and/or noradrenaline transporters. These drugs show slow onset of clinical action and limited efficacy, partly due to the activation of physiological negative feed-back mechanisms operating through autoreceptors (5-HT1A, 5-HT1B, α2-adrenoceptors) and postsynaptic receptors (e.g., 5-HT3). As a result, clinically-relevant doses of reuptake inhibitors increase extracellular (active) 5-HT concentrations in the midbrain raphe nuclei but not in forebrain, as indicated by rodent microdialysis studies and by PET-scan studies in primate/human brain. The prevention of these self-inhibitory mechanisms by antagonists of the above receptors augments preclinical and clinical antidepressant effects. Hence, the mixed ß-adrenoceptor/5-HT1A antagonist pindolol accelerated, and in some cases enhanced, the clinical action of selective serotonin reuptake inhibitors (SSRI). This strategy has been incorporated into two new multi-target antidepressant drugs, vilazodone and vortioxetine, which combine 5-HT reuptake inhibition and partial agonism at 5-HT1A receptors. Vortioxetine shows also high affinity for other 5-HT receptors, including excitatory 5-HT3 receptors located in cortical and hippocampal GABA interneurons. 5-HT3 receptor blockade by vortioxetine enhances pyramidal neuron activity in prefrontal cortex as well as cortical and hippocampal 5-HT release. It is still too soon to know whether these new antidepressants will represent a real advance over existing drugs in the real world. However, their development opened the way to future antidepressant drugs based on the prevention of local and distal self-inhibitory mechanisms attenuating monoamine activity.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Neurotransmissores/farmacologia , Neurotransmissores/uso terapêutico , Animais , Monoaminas Biogênicas/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Humanos
11.
Eur Neuropsychopharmacol ; 27(12): 1248-1257, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29128144

RESUMO

Brexpiprazole (BREX), a recently approved antipsychotic drug in the US and Canada, improves cognitive dysfunction in animal models, by still largely unknown mechanisms. BREX is a partial agonist at 5-HT1A and D2 receptors and antagonist at α1B- and α2C-adrenergic and 5-HT2A receptors all with a similar potency. The NMDA receptor antagonist phencyclidine (PCP), used as pharmacological model of schizophrenia, activates thalamocortical networks and decreases low frequency oscillations (LFO; <4 Hz). These effects are reversed by antipsychotics. Here we assessed the ability of BREX to reverse PCP-induced hyperactivity of thalamocortical circuits, and the involvement of 5-HT1A receptors in its therapeutic action. BREX reversed PCP-induced neuronal activation at a lower dose in centromedial/mediodorsal thalamic nuclei (CM/MD; 0.5mg/kg) than in pyramidal medial prefrontal cortex neurons (mPFC, 2mg/kg), perhaps due to antagonism at α1B-adrenoceptors, abundantly expressed in the thalamus. Conversely, a cumulative 0.5 mg/kg dose reversed a PCP-induced LFO decrease in mPFC but not in CM/MD. BREX reduced LFO in both areas, yet with a different dose-response, and moderately excited mPFC neurons. The latter effect was reversed by the 5-HT1A receptor antagonist WAY-100635. Thus, BREX partly antagonizes PCP-induced thalamocortical hyperactivity, differentially in mPFC versus CM/MD. This regional selectivity may be related to the differential expression of α1B-, α2C-adrenergic and 5-HT2A receptors in both regions and/or different neuronal types. Furthermore, the pro-cognitive properties of BREX may be related to the 5-HT1A receptor-mediated increase in mPFC pyramidal neuron activity. Overall, the present data provide new insight on the brain elements involved in BREX's therapeutic actions.


Assuntos
Antipsicóticos/farmacologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Quinolonas/farmacologia , Núcleos Talâmicos/efeitos dos fármacos , Tiofenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Análise de Fourier , Masculino , Vias Neurais/fisiologia , Fenciclidina/farmacologia , Piperazinas/farmacologia , Córtex Pré-Frontal/citologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Núcleos Talâmicos/citologia
12.
J Psychiatry Neurosci ; 42(1): 48-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391101

RESUMO

BACKGROUND: The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. METHODS: We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on, to our knowledge, the most comprehensive study undertaken to date in 22q11.2DS models. The study was conducted in male mice. RESULTS: We found elevated postpubertal N-methyl-D-aspartate (NMDA) receptor antagonist-induced hyperlocomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR were resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. LIMITATIONS: The 22q11.2 microdeletion has incomplete penetrance in humans, and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. CONCLUSION: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.


Assuntos
Envelhecimento/fisiologia , Síndrome de DiGeorge/fisiopatologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Filtro Sensorial/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Percepção Auditiva/fisiologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo de Sobressalto/fisiologia
13.
Neuropharmacology ; 113(Pt A): 148-155, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27671324

RESUMO

Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p-chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of VOR-containing food. Four groups were implanted with minipumps delivering vehicle or ESC 10 mg/kg·day s.c. The two VOR doses enable occupation by VOR of SERT+5-HT3-R and all targets, respectively, and correspond to SERT occupancies in patients treated with 5 and 20 VOR mg/day, respectively. Putative pyramidal neurons (n = 985) were recorded extracellularly in the mPFC of anesthetized rats. Sub-chronic VOR administration (but not ESC) significantly increased neuronal discharge in standard and 5-HT-depleted conditions, with a greater effect of the low VOR dose in standard rats. VOR increased neuronal discharge in infralimbic (IL) and prelimbic (PrL) cortices. Hence, oral VOR doses evoking SERT occupancies similar to those in treated patients increase mPFC neuronal discharge. The effect in 5-HT-depleted rats cannot be explained by an antagonist action of VOR at 5-HT3-R and suggests a non-canonical interaction of VOR with 5-HT3-R. These effects may underlie the superior pro-cognitive efficacy of VOR compared with SSRIs in animal models.


Assuntos
Antidepressivos/administração & dosagem , Citalopram/administração & dosagem , Piperazinas/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Sulfetos/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Animais , Masculino , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Vortioxetina
14.
Nat Rev Drug Discov ; 16(1): 1-2, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27811930

RESUMO

Despite the vast amount of research on schizophrenia and depression in the past two decades, there have been few innovative drugs to treat these disorders. Precompetitive research collaborations between companies and academic groups can help tackle this innovation deficit, as illustrated by the achievements of the IMI-NEWMEDS consortium.


Assuntos
Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Transtornos Mentais/fisiopatologia , Vias Neurais/fisiopatologia , Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Indústria Farmacêutica , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia
15.
Neuropharmacology ; 108: 73-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27106166

RESUMO

The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons.


Assuntos
Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Piperazinas/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Sulfetos/farmacologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonistas dos Receptores de GABA-B/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vortioxetina
16.
Psychopharmacology (Berl) ; 233(11): 2151-2163, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983414

RESUMO

RATIONALE: A microdeletion at locus 15q13.3 is associated with high incidence rates of psychopathology, including schizophrenia. A mouse model of the 15q13.3 microdeletion syndrome has been generated (Df[h15q13]/+) with translational utility for modelling schizophrenia-like pathology. Among other deficits, schizophrenia is characterised by dysfunctions in prefrontal cortical (PFC) inhibitory circuitry and attention. OBJECTIVES: The objective of this study is to assess PFC-dependent functioning in the Df(h15q13)/+ mouse using electrophysiological, pharmacological, and behavioural assays. METHOD: Experiments 1-2 investigated baseline firing and auditory-evoked responses of PFC interneurons and pyramidal neurons. Experiment 3 measured pyramidal firing in response to intra-PFC GABAA receptor antagonism. Experiments 4-6 assessed PFC-dependent attentional functioning through the touchscreen 5-choice serial reaction time task (5-CSRTT). Experiments 7-12 assessed reversal learning, paired-associate learning, extinction learning, progressive ratio, trial-unique non-match to sample, and object recognition. RESULTS: In experiments 1-3, the Df(h15q13)/+ mouse showed reduced baseline firing rate of fast-spiking interneurons and in the ability of the GABAA receptor antagonist gabazine to increase the firing rate of pyramidal neurons. In assays of auditory-evoked responses, PFC interneurons in the Df(h15q13)/+ mouse had reduced detection amplitudes and increased detection latencies, while pyramidal neurons showed increased detection latencies. In experiments 4-6, the Df(h15q13)/+ mouse showed a stimulus duration-dependent decrease in percent accuracy in the 5-CSRTT. The impairment was insensitive to treatment with the partial α7nAChR agonist EVP-6124. The Df(h15q13)/+ mouse showed no cognitive impairments in experiments 7-12. CONCLUSION: The Df(h15q13)/+ mouse has multiple dysfunctions converging on disrupted PFC processing as measured by several independent assays of inhibitory transmission and attentional function.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Deleção de Genes , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Animais , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Comportamento Animal/efeitos dos fármacos , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 15/genética , Modelos Animais de Doenças , Potenciais Evocados Auditivos/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Humanos , Deficiência Intelectual/genética , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/efeitos dos fármacos , Piridazinas/farmacologia , Tempo de Reação/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Reversão de Aprendizagem/efeitos dos fármacos , Convulsões/genética
17.
Neuropharmacology ; 101: 370-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26477571

RESUMO

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Alucinógenos/farmacologia , Metoxidimetiltriptaminas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Risperidona/farmacologia , Serotonina/metabolismo , Serotoninérgicos/farmacologia
18.
Eur Neuropsychopharmacol ; 25(8): 1353-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25914158

RESUMO

The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Fluoxetina/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Relação Dose-Resposta a Droga , Emoções/efeitos dos fármacos , Emoções/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Receptor 5-HT2A de Serotonina/genética , Reconhecimento Psicológico/fisiologia , Fatores de Tempo
19.
Biol Psychiatry ; 76(12): 937-45, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038984

RESUMO

BACKGROUND: The neurobiological basis of action of noncompetitive N-methyl-D-aspartate acid receptor (NMDA-R) antagonists is poorly understood. Electrophysiological studies indicate that phencyclidine (PCP) markedly disrupts neuronal activity with an overall excitatory effect and reduces the power of low-frequency oscillations (LFO; <4 Hz) in thalamocortical networks. Because the reticular nucleus of the thalamus (RtN) provides tonic feed-forward inhibition to the rest of the thalamic nuclei, we examined the effect of PCP on RtN activity, under the working hypothesis that NMDA-R blockade in RtN would disinhibit thalamocortical networks. METHODS: Drug effects (PCP followed by clozapine) on the activity of RtN (single unit and local field potential recordings) and prefrontal cortex (PFC; electrocorticogram) in anesthetized rats were assessed. RESULTS: PCP (.25-.5 mg/kg, intravenous) reduced the discharge rate of 19 of 21 RtN neurons to 37% of baseline (p < .000001) and the power of LFO in RtN and PFC to ~20% of baseline (p < .001). PCP also reduced the coherence between PFC and RtN in the LFO range. A low clozapine dose (1 mg/kg intravenous) significantly countered the effect of PCP on LFO in PFC but not in RtN and further reduced the discharge rate of RtN neurons. However, clozapine administration partly antagonized the fall in coherence and phase-locking values produced by PCP. CONCLUSIONS: PCP activates thalamocortical circuits in a bottom-up manner by reducing the activity of RtN neurons, which tonically inhibit thalamic relay neurons. However, clozapine reversal of PCP effects is not driven by restoring RtN activity and may involve a cortical action.


Assuntos
Neurônios GABAérgicos/efeitos dos fármacos , Alucinógenos/farmacologia , Fenciclidina/farmacologia , Tálamo/citologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Clozapina/farmacologia , Antagonistas GABAérgicos/farmacologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar
20.
Int J Neuropsychopharmacol ; 17(8): 1269-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24650558

RESUMO

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (-31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.


Assuntos
Antipsicóticos/farmacologia , Banisteriopsis/química , Ondas Encefálicas/efeitos dos fármacos , Alucinógenos/farmacologia , Metoxidimetiltriptaminas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Clozapina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Neuroimagem Funcional , Alucinógenos/antagonistas & inibidores , Haloperidol/farmacologia , Imageamento por Ressonância Magnética , Masculino , Metoxidimetiltriptaminas/antagonistas & inibidores , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Risperidona/farmacologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...