Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17462, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484349

RESUMO

Background/purpose: Additive manufacturing (AM), also known as 3D printing, has the potential to transform the industry. While there have been advancements in using AM for dental restorations, there is still a need for further research to develop functional biomedical and dental materials. It's crucial to understand the current status of AM technology and research trends to advance dental research in this field. The aim of this study is to reveal the current status of international scientific publications in the field of dental research related to AM technologies. Materials and methods: In this study, a systematic scoping review was conducted using appropriate keywords within the scope of international scientific publishing databases (PubMed and Web of Science). The review included related clinical and laboratory research, including both human and animal studies, case reports, review articles, and questionnaire studies. A total of 187 research studies were evaluated for quantitative synthesis in this review. Results: The findings highlighted a rising trend in research numbers over the years (From 2012 to 2022). The most publications were produced in 2020 and 2021, with annual percentage increases of 25.7% and 26.2%, respectively. The majority of AM-related publications in dentistry research originate from Korea. The pioneer dental sub-fields with the ost publications in its category are prosthodontics and implantology, respectively. Conclusion: The final review result clearly stated an expectation for the future that the research in dentistry would concentrate on AM technologies in order to increase the new product and process development in dental materials, tools, implants and new generation modelling strategy related to AM. The results of this work can be used as indicators of trends related to AM research in dentistry and/or as prospects for future publication expectations in this field.

2.
J Orthop Traumatol ; 24(1): 30, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358664

RESUMO

BACKGROUND: Conventionally, two 4.5 mm cortical screws inserted toward the posterior tibial cortex are usually advocated for the fixation of Fulkerson osteotomy. This finite element analysis aimed to compare the biomechanical behavior of four different screw configurations to fix the Fulkerson osteotomy. MATERIALS AND METHODS: Fulkerson osteotomy was modeled using computerized tomography (CT) data of a patient with patellofemoral instability and fixed with four different screw configurations using two 4.5 mm cortical screws in the axial plane. The configurations were as follows: (1) two screws perpendicular to the osteotomy plane, (2) two screws perpendicular to the posterior cortex of the tibia, (3) the upper screw perpendicular to the osteotomy plane, but the lower screw is perpendicular to the posterior cortex of the tibia, and (4) the reverse position of the screw configuration in the third scenario. Gap formation, sliding, displacement, frictional stress, and deformation of the components were calculated and reported. RESULTS: The osteotomy fragment moved superiorly after loading the models with 1654 N patellar tendon traction force. Since the proximal cut is sloped (bevel-cut osteotomy), the osteotomy fragment slid and rested on the upper tibial surface. Afterward, the upper surface of the osteotomy fragment acted as a fulcrum, and the distal part of the fragment began to separate from the tibia while the screws resisted the displacement. The resultant total displacement was 0.319 mm, 0.307 mm, 0.333 mm, and 0.245 mm from the first scenario to the fourth scenario, respectively. The minimum displacement was detected in the fourth scenario (upper screw perpendicular to the osteotomy plane and lower screw perpendicular to the posterior tibial cortex). Maximum frictional stress and maximum pressure between components on both surfaces were highest in the first scenario (both screws perpendicular to the osteotomy plane). CONCLUSIONS: A divergent screw configuration in which the upper screw is inserted perpendicular to the osteotomy plane and the lower screw is inserted perpendicular to the posterior tibial cortex might be a better option for the fixation of Fulkerson osteotomy. Level of evidence Level V, mechanism-based reasoning.


Assuntos
Parafusos Ósseos , Tíbia , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Tíbia/cirurgia , Osteotomia/métodos , Fixação Interna de Fraturas/métodos
3.
Knee ; 37: 132-142, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779431

RESUMO

BACKGROUND: Antero-medialisation osteotomy combined with a distalisation procedure may require a more stable fixation as the osteotomy fragment loses both proximal and distal support. This finite element analysis aimed to compare the mechanical behaviour of different fixation techniques in tibial tubercle antero-medialisation osteotomy combined with distalisation procedure. METHODS: Tibial tubercle osteotomy combined with distalisation was modelled based on computerised tomography data, which were acquired from a patient with patellar instability requiring this procedure. Six different fixation configurations with two 3.5-mm cortical screws (1), two 4.5-mm cortical screws (2), three 3.5-mm cortical screws (3), three 4.5-mm cortical screws (4), three 3.5-mm screws with 1/3 tubular plate (5), and four 3.5-mm screws with 1/3 tubular plate (6) were created. A total of 1654 N of force was applied to the patellar tendon footprint on the tibial tubercle. Sliding, gap formation, and total deformation between the osteotomy components were analyzed. RESULTS: Maximum sliding (0.660 mm), gap formation (0.661 mm), and displacement (1.267 mm) were seen with two 3.5-mm screw fixation, followed by two 4.5-mm screws, three 3.5-mm screws, and three 4.5-mm screws, respectively, in the screw-only group. Overall, the minimum displacement was observed with the four 3.5-mm screws with 1/3 tubular plate fixation model. CONCLUSIONS: Plate fixation might be recommended for tibial tubercle antero-medialisation osteotomy combined with distalisation procedure because it might allow early active range of motion exercises and weight-bearing.


Assuntos
Instabilidade Articular , Articulação Patelofemoral , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Análise de Elementos Finitos , Humanos , Osteotomia/métodos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
4.
J Foot Ankle Surg ; 61(2): 253-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34456133

RESUMO

This study aimed to evaluate different fixation techniques and implants in oblique and biplanar chevron medial malleolar osteotomies using finite element analysis. Both oblique and biplanar chevron osteotomy models were created, and each osteotomy was fixed with 2 different screws (3.5 mm cortical screw and 4.0 mm malleolar screw) in 2 different configurations; (1) 2 perpendicular screws, and (2) an additional third transverse screw. Nine simulation scenarios were set up, including 8 osteotomy fixations and the intact ankle. A bodyweight of 810.44 N vertical loading was applied to simulate a single leg stand on a fixed ankle. Sliding, separation, frictional stress, contact pressures between the fragments were analyzed. Maximum sliding (58.347µm) was seen in oblique osteotomy fixed with 2 malleolar screws, and the minimum sliding (17.272 µm) was seen in chevron osteotomy fixed with 3 cortical screws. The maximum separation was seen in chevron osteotomy fixed with 2 malleolar screws, and the minimum separation was seen in oblique osteotomy fixed with 3 cortical screws. Maximum contact pressure and the frictional stress at the osteotomy plane were obtained in chevron osteotomy fixed with 3 cortical screws. The closest value to normal tibiotalar contact pressures was obtained in chevron osteotomy fixed with 3 cortical screws. This study revealed that cortical screws provided better stability compared to malleolar screws in each tested osteotomy and fixation configuration. The insertion of the third transverse screw decreased both sliding and separation. Biplanar chevron osteotomy fixed with 3 cortical screws was the most stable model.


Assuntos
Parafusos Ósseos , Osteotomia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Osteotomia/métodos , Tíbia/cirurgia
5.
Int J Bioprint ; 6(4): 286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088997

RESUMO

During the coronavirus disease-19 pandemic, the demand for specific medical equipment such as personal protective equipment has rapidly exceeded the available supply around the world. Specifically, simple medical equipment such as medical gloves, aprons, goggles, surgery masks, and medical face shields have become highly in demand in the health-care sector in the face of this rapidly developing pandemic. This difficult period strengthens the social solidarity to an extent parallel to the escalation of this pandemic. Education and government institutions, commercial and noncommercial organizations and individual homemakers have produced specific medical equipment by means of additive manufacturing (AM) technology, which is the fastest way to create a product, providing their support for urgent demands within the health-care services. Medical face shields have become a popular item to produce, and many design variations and prototypes have been forthcoming. Although AM technology can be used to produce several types of noncommercial equipment, this rapid manufacturing approach is limited by its longer production time as compared to conventional serial/mass production and the high demand. However, most of the individual designer/maker-based face shields are designed with little appreciation of clinical needs and nonergonomic. They also lack of professional product design and are not designed according to AM (Design for AM [DfAM]) principles. Consequently, the production time of up to 4 - 5 h for some products of these designs is needed. Therefore, a lighter, more ergonomic, single frame medical face shield without extra components to assemble would be useful, especially for individual designers/makers and noncommercial producers to increase productivity in a shorter timeframe. In this study, a medical face shield that is competitively lighter, relatively more ergonomic, easy to use, and can be assembled without extra components (such as elastic bands, softening materials, and clips) was designed. The face shield was produced by AM with a relatively shorter production time. Subsequently, finite element analysis-based structural design verification was performed, and a three-dimensional (3D) prototype was produced by an original equipment manufacturer 3D printer (Fused Deposition Modeling). This study demonstrated that an original face shield design with <10 g material usage per single frame was produced in under 45 min of fabrication time. This research also provides a useful product DfAM of simple medical equipment such as face shields through advanced engineering design, simulation, and AM applications as an essential approach to battling coronavirus-like viral pandemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...