Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Air Qual Atmos Health ; 16(4): 745-764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687138

RESUMO

2020 presented the ideal conditions for studying the air quality response to several emission reductions due to the COVID-19 lockdowns. Numerous studies found that the tropospheric ozone increased even in lockdown conditions, but its reasons are not entirely understood. This research aims to better understand the ozone variations in Northern South America. Satellite and reanalysis data were used to analyze regional ozone variations. An analysis of two of the most polluted Colombian cities was performed by quantifying the changes of ozone and its precursors and by doing a machine learning decomposition to disentangle the contributions that precursors and meteorology made to form O3. The results indicated that regional ozone increased in most areas, especially where wildfires are present. Meteorology is associated with favorable conditions to promote wildfires in Colombia and Venezuela. Regarding the local analysis, the machine learning ensemble shows that the decreased titration process associated with the NO plummeting owing to mobility reduction is the main contributor to the O3 increase (≈50%). These tools lead to conclude that (i) the increase in O3 produced by the reduction of the titration process that would be associated with an improvement in mobile sources technology has to be considered in the new air quality policies, (ii) a boost in international cooperation is essential to control wildfires since an event that occurs in one country can affect others and (iii) a machine learning decomposition approach coupled with sensitivity experiments can help us explain and understand the physicochemical mechanism that drives ozone formation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11869-023-01303-6.

2.
Sensors (Basel) ; 22(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433386

RESUMO

Throughout the years, wildfires have negatively impacted ecological systems and urban areas. Hence, reinforcing territorial risk management strategies against wildfires is essential. In this study, we built an early alert system (EAS) with two different Machine Learning (ML) techniques to calculate the meteorological conditions of two Colombian areas: (i) A 3D convolutional neural net capable of learning from satellite data and (ii) a convolutional network to bias-correct the Weather Research and Forecasting (WRF) model output. The results were used to quantify the daily Fire Weather Index and were coupled with the outcomes from a land cover analysis conducted through a Naïve-Bayes classifier to estimate the probability of wildfire occurrence. These results, combined with an assessment of global vulnerability in both locations, allow the construction of daily risk maps in both areas. On the other hand, a set of short-term preventive and corrective measures were suggested to public authorities to implement, after an early alert prediction of a possible future wildfire. Finally, Soil Management Practices are proposed to tackle the medium- and long-term causes of wildfire development, with the aim of reducing vulnerability and promoting soil protection. In conclusion, this paper creates an EAS for wildfires, based on novel ML techniques and risk maps.


Assuntos
Incêndios , Incêndios Florestais , Teorema de Bayes , Tempo (Meteorologia) , Solo
3.
Environ Sci Pollut Res Int ; 27(29): 35930-35940, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32146667

RESUMO

Air quality data from Bogotá, Colombia, show high levels of particulate matter (PM), which often generate respiratory problems to the population and a high economic cost to the government. Since 2016, air quality in the city of Bogotá has been measured through the Bogota Air Quality Index (IBOCA) which works as an indicator of environmental risk due to air pollution. However, available technological tools in Bogotá are not enough to generate early alerts due to PM10 and PM2.5. Currently, alerts are only announced once the measured PM values exceed a certain standard (e.g., 37 µ g/m3), but not with enough anticipation to efficiently protect the population. It is necessary to develop an early air quality alert in Bogotá, in order to provide information that improves risk management protocols in the capital district. The purpose of this investigation is to validate the corrective alert presented on the 14th and 15th of February of 2019, through the WRF-Chem model under different weather conditions, using three different setups of the model to simulate PM10 and PM2.5 concentrations during two different climatic seasons and different resolutions. The results of this article generate a validation of two configurations of the model that can be used for the Environmental Secretary of the District (SDA) forecasts in Bogotá, Colombia, in order to contribute to the prediction of pollution events produced by PM10 and PM2.5 as a tool for an early alert system (EAS) at least 24 h in advance.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Colômbia , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...