Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 21(4): 4235-43, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481957

RESUMO

We investigate the influence of the substrate on a photonic crystal thermo-optic device on a silicon-on-insulator (SOI) platform. The substrate-induced thermo-optic tuning is obtained as a function of key physical parameters, based on a semi-analytic theory that agrees well with numeric simulations. It is shown that for some devices, the substrate's contribution to the thermo-optic tuning can exceed 10% for a heater located in the waveguide core and much higher for some other configurations. The slow response of the substrate may also significantly slow down the overall response time of the device. Strategies of minimizing the substrate's influence are discussed.


Assuntos
Calefação/instrumentação , Dispositivos Ópticos , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
2.
Sci Rep ; 3: 1291, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23416347

RESUMO

Fast flexible electronics operating at radio frequencies (>1 GHz) are more attractive than traditional flexible electronics because of their versatile capabilities, dramatic power savings when operating at reduced speed and broader spectrum of applications. Transferrable single-crystalline Si nanomembranes (SiNMs) are preferred to other materials for flexible electronics owing to their unique advantages. Further improvement of Si-based device speed implies significant technical and economic advantages. While the mobility of bulk Si can be enhanced using strain techniques, implementing these techniques into transferrable single-crystalline SiNMs has been challenging and not demonstrated. The past approach presents severe challenges to achieve effective doping and desired material topology. Here we demonstrate the combination of strained- NM-compatible doping techniques with self-sustained-strain sharing by applying a strain-sharing scheme between Si and SiGe multiple epitaxial layers, to create strained print-transferrable SiNMs. We demonstrate a new speed record of Si-based flexible electronics without using aggressively scaled critical device dimensions.

3.
Opt Express ; 20(4): 4225-31, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418181

RESUMO

Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

4.
ACS Nano ; 5(7): 5532-42, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21682324

RESUMO

Strain in a material changes the lattice constant and thereby creates a material with new properties relative to the unstrained, but chemically identical, material. The ability to alter the strain (its magnitude, direction, extent, periodicity, symmetry, and nature) allows tunability of these new properties. A recent development, crystalline nanomembranes, offers a powerful platform for using and tuning strain to create materials that have unique properties, not achievable in bulk materials or with conventional processes. Nanomembranes, because of their thinness, enable elastic strain sharing, a process that introduces large amounts of strain and unique strain distributions in single-crystal materials, without exposing the material to the formation of extended defects. We provide here prescriptions for making new strained materials using crystal symmetry as the driver: we calculate the strain distributions in flat nanomembranes for two-fold and four-fold elastically symmetric materials. We show that we can controllably tune the amount of strain and the asymmetry of the strain distribution in elastically isotropic and anisotropic materials uniformly over large areas. We perform the experimental demonstration with a trilayer Si(110)/Si((1-x))Ge(x)(110)/Si(110) nanomembrane: an elastically two-fold symmetric system in which we can transfer strain that is biaxially isotropic. We are thus able to make uniformly strained materials that cannot be made any other way.

5.
Small ; 6(22): 2553-7, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-20878631

RESUMO

Multigigahertz flexible electronics are attractive and have broad applications. A gate-after-source/drain fabrication process using preselectively doped single-crystal silicon nanomembranes (SiNM) is an effective approach to realizing high device speed. However, further downscaling this approach has become difficult in lithography alignment. In this full paper, a local alignment scheme in combination with more accurate SiNM transfer measures for minimizing alignment errors is reported. By realizing 1 µm channel alignment for the SiNMs on a soft plastic substrate, thin-film transistors with a record speed of 12 GHz maximum oscillation frequency are demonstrated. These results indicate the great potential of properly processed SiNMs for high-performance flexible electronics.


Assuntos
Membranas Artificiais , Nanotecnologia/métodos , Silício/química , Transistores Eletrônicos
6.
ACS Nano ; 4(4): 2466-74, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20302337

RESUMO

We report direct measurements of changes in the conduction-band structure of ultrathin silicon nanomembranes with quantum confinement. Confinement lifts the 6-fold-degeneracy of the bulk-silicon conduction-band minimum (CBM), Delta, and two inequivalent sub-band ladders, Delta(2) and Delta(4), form. We show that even very small surface roughness smears the nominally steplike features in the density of states (DOS) due to these sub-bands. We obtain the energy splitting between Delta(2) and Delta(4) and their shift with respect to the bulk value directly from the 2p(3/2)-->Delta transition in X-ray absorption. The measured dependence of the sub-band splitting and the shift of their weighted average on degree of confinement is in excellent agreement with theory, for both Si(001) and Si(110).

7.
Nature ; 439(7077): 703-6, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467833

RESUMO

The widely used 'silicon-on-insulator' (SOI) system consists of a layer of single-crystalline silicon supported on a silicon dioxide substrate. When this silicon layer (the template layer) is very thin, the assumption that an effectively infinite number of atoms contributes to its physical properties no longer applies, and new electronic, mechanical and thermodynamic phenomena arise, distinct from those of bulk silicon. The development of unusual electronic properties with decreasing layer thickness is particularly important for silicon microelectronic devices, in which (001)-oriented SOI is often used. Here we show--using scanning tunnelling microscopy, electronic transport measurements, and theory--that electronic conduction in thin SOI(001) is determined not by bulk dopants but by the interaction of surface or interface electronic energy levels with the 'bulk' band structure of the thin silicon template layer. This interaction enables high-mobility carrier conduction in nanometre-scale SOI; conduction in even the thinnest membranes or layers of Si(001) is therefore possible, independent of any considerations of bulk doping, provided that the proper surface or interface states are available to enable the thermal excitation of 'bulk' carriers in the silicon layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...