Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep Med ; 105: 78-84, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966579

RESUMO

Habitual declines in sleep duration and increased rates of obesity are public health concerns worldwide. Accumulating evidence suggests a prominent link between reduced sleep duration and weight gain. Our cross-sectional study investigated the relationship between sleep duration and body fat distribution in US adults. We extracted data for 5151 participants (2575 men and 2576 women) aged 18-59 years from the US National Health and Nutrition Examination Survey 2011-2012 and 2013-2014. Weekday or workday night-time sleep duration was estimated using an in-home interview questionnaire. Dual-energy x-ray absorptiometry scans were used to determine regional body fat mass (arms, legs, trunk [android and gynoid], and abdominal [subcutaneous and visceral]). Multiple linear regression and restricted cubic spline analyses were performed after adjusting for several demographic, anthropometric, and nutritional covariates. There was a significant negative association between sleep duration and visceral fat mass overall (ß: -12.139, P < 0.001) and by sex (men: ß: -10.096, P < 0.001; women: ß: -11.545, P = 0.038), after adjusting for age, ethnicity, body mass index, total body fat mass, daily energy and alcohol intake, sleep quality and sleep disorder status. Sleep duration and visceral fat appeared to plateau at ≥ 8 h of daily sleep. Sleep duration is negatively associated with visceral fat mass accumulation during adulthood with possibly no benefits beyond 8 h of sleep per day. Mechanistic and prospective studies are required to confirm the effect of sleep duration on visceral adiposity and determine its causes.


Assuntos
Gordura Intra-Abdominal , Transtornos do Sono-Vigília , Masculino , Adulto , Humanos , Feminino , Inquéritos Nutricionais , Gordura Intra-Abdominal/diagnóstico por imagem , Duração do Sono , Estudos Transversais , Sono , Índice de Massa Corporal
2.
BMC Geriatr ; 22(1): 817, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36273115

RESUMO

BACKGROUND: Ketosis has been exploited for its neuroprotective impact and treatment of neurological conditions via ketone production. Exogenous medium-chain triglyceride (MCT) supplementation may induce nutritional ketosis. The aim of this systematic review is to explore the effects of MCTs on memory function in older adults without cognitive impairment. METHODS: A systematic literature search of PubMed, Cochrane Library, Scopus, and Web of Science was employed from inception until April 2022 for randomized controlled trials (RCTs) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, investigating the impact of MCT oils on components of memory. Risk of bias (RoB2) tool was utilized for quality assessment. RESULTS: Six trials were included for qualitative synthesis, in which two studies examined the effect of MCTs through a ketogenic meal. MCT supplementation compared to controls was associated with improved indices of memory function in 4 out of 6 studies, particularly working memory. A meta-analysis was not employed due to the low number of studies, therefore, a true effect measure of MCT supplementation was not explored. CONCLUSIONS: MCT supplementation may enhance working memory in non-demented older adults. These effects may be more prominent in individuals with lower baseline scores, from short and long-term supplementation. Further studies are warranted to confirm these findings in terms of optimal dose and MCTs composition, which may protect from memory decline during aging.


Assuntos
Corpos Cetônicos , Cetose , Humanos , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos , Óleos
3.
Brain Sci ; 12(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35884632

RESUMO

Sleep deprivation leads to the deterioration in the physiological functioning of the brain, cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age. Sleep insufficiency and impairments in cognitive function are characterized by progressive neuronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-deprived murine models and circadian matched controls to identify genes that might underlie cortical homeostasis in response to sleep deprivation. Screening of the literature resulted in three murine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included cortical tissue biopsies from mice that are sleep deprived for 6 h (n = 15) and from circadian controls that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a network of encoded proteins that are ranked based on their interactome according to 11 topological algorithms. The analysis revealed three genes-NFKBIA, EZR, and SGK1-which exhibited the highest multi-algorithmic topological significance. These genes are strong markers of increased brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply aging-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants further experimental validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...