Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 16: 55, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924309

RESUMO

BACKGROUND: The transition from vegetative to floral state in shoot apical meristems (SAM) is a key event in plant development and is of crucial importance for reproductive success. In perennial plants, this event is recurrent during tree life and subject to both within-tree and between-years heterogeneity. In the present study, our goal was to identify candidate processes involved in the repression or induction of flowering in apical buds of adult apple trees. RESULTS: Genes differentially expressed (GDE) were examined between trees artificially set in either 'ON' or 'OFF' situation, and in which floral induction (FI) was shown to be inhibited or induced in most buds, respectively, using qRT-PCR and microarray analysis. From the period of FI through to flower differentiation, GDE belonged to four main biological processes (i) response to stimuli, including response to oxidative stress; (ii) cellular processes, (iii) cell wall biogenesis, and (iv) metabolic processes including carbohydrate biosynthesis and lipid metabolic process. Several key regulator genes, especially TEMPRANILLO (TEM), FLORAL TRANSITION AT MERISTEM (FTM1) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) were found differentially expressed. Moreover, homologs of SPL and Leucine-Rich Repeat proteins were present under QTL zones previously detected for biennial bearing. CONCLUSIONS: This data set suggests that apical buds of 'ON' and 'OFF' trees were in different physiological states, resulting from different metabolic, hormonal and redox status which are likely to contribute to FI control in adult apple trees. Investigations on carbohydrate and hormonal fluxes from sources to SAM and on cell detoxification process are expected to further contribute to the identification of the underlying physiological mechanisms of FI in adult apple trees.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Flores/genética , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Árvores/genética
2.
New Phytol ; 192(2): 378-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21770946

RESUMO

The present study investigates the genetic determinism of bud phenological traits using two segregating F(1) apple (Malus × domestica) progenies. Phenological trait variability was dissected into genetic and climatic components using mixed linear modeling, and estimated best linear unbiased predictors were used for quantitative trait locus (QTL) detection. For flowering dates, year effects were decomposed into chilling and heat requirements based on a previously developed model. QTL analysis permitted the identification of two major and population-specific genomic regions on LG08 and LG09. Both 'chilling requirement' and 'heat requirement' periods influenced flowering dates, although their relative impact was dependent on the genetic background. Using the apple genome sequence data, putative candidate genes underlying one major QTL were investigated. Numerous key genes involved in cell cycle control were identified in clusters within the confidence interval of the major QTL on LG09. Our results contribute towards a better understanding of the interaction between QTLs and climatic conditions, and provide a basis for the identification of genes involved in bud growth resumption.


Assuntos
Malus/crescimento & desenvolvimento , Malus/genética , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Temperatura Alta , Meristema/genética , Meristema/crescimento & desenvolvimento , Locos de Características Quantitativas , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...