Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4999, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404769

RESUMO

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


Assuntos
Antibacterianos/farmacologia , Listeria/efeitos dos fármacos , Listeriose/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Fagócitos/microbiologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/imunologia , Células RAW 264.7 , Transcriptoma , Fatores de Virulência , Internalização do Vírus/efeitos dos fármacos
2.
Nat Microbiol ; 3(12): 1472-1485, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478389

RESUMO

Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear. Here we show that autophagy-related (ATG) protein ATG16L1 and its binding partners ATG5 and ATG12 are required for plasma membrane repair through a pathway independent of macroautophagy. ATG16L1 is required for lysosome fusion with the plasma membrane and blebbing responses that promote membrane repair. ATG16L1 deficiency causes accumulation of cholesterol in lysosomes that contributes to defective membrane repair. Cell-to-cell spread by Listeria monocytogenes requires membrane damage by the bacterial toxin listeriolysin O, which is restricted by ATG16L1-dependent membrane repair. Cells harbouring the ATG16L1 T300A allele associated with inflammatory bowel disease were also found to accumulate cholesterol and be defective in repair, linking a common inflammatory disease to plasma membrane integrity. Thus, plasma membrane repair could be an important therapeutic target for the treatment of bacterial infections and inflammatory disorders.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Animais , Autofagia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Toxinas Bacterianas/toxicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Colesterol/metabolismo , Modelos Animais de Doenças , Exocitose , Células HeLa , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/toxicidade , Humanos , Listeria monocytogenes/metabolismo , Lisossomos , Masculino , Camundongos
3.
Autophagy ; 12(9): 1440-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27310610

RESUMO

Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia , Proteínas de Transporte/fisiologia , Fagossomos/metabolismo , Animais , Apresentação de Antígeno , Proteínas de Transporte/genética , Fibroblastos/metabolismo , Humanos , Imunoglobulina G/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Células NIH 3T3 , Receptores de IgG/metabolismo
4.
PLoS One ; 10(5): e0125856, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970638

RESUMO

Listeria monocytogenes is an intracellular bacterial pathogen that can replicate in the cytosol of host cells. These bacteria undergo actin-based motility in the cytosol via expression of ActA, which recruits host actin-regulatory proteins to the bacterial surface. L. monocytogenes is thought to evade killing by autophagy using ActA-dependent mechanisms. ActA-independent mechanisms of autophagy evasion have also been proposed, but remain poorly understood. Here we examined autophagy of non-motile (ΔactA) mutants of L. monocytogenes strains 10403S and EGD-e, two commonly studied strains of this pathogen. The ΔactA mutants displayed accumulation of ubiquitinated proteins and p62/SQSTM1 on their surface. However, only strain EGD-e ΔactA displayed colocalization with the autophagy marker LC3 at 8 hours post infection. A bacteriostatic agent (chloramphenicol) was required for LC3 recruitment to 10403S ΔactA, suggesting that these bacteria produce a factor for autophagy evasion. Internalin K was proposed to block autophagy of L. monocytogenes in the cytosol of host cells. However, deletion of inlK in either the wild-type or ΔactA background of strain 10403S had no impact on autophagy evasion by bacteria, indicating it does not play an essential role in evading autophagy. Replication of ΔactA mutants of strain EGD-e and 10403S was comparable to their parent wild-type strain in macrophages. Thus, ΔactA mutants of L. monocytogenes can block killing by autophagy at a step downstream of protein ubiquitination and, in the case of strain EGD-e, downstream of LC3 recruitment to bacteria. Our findings highlight the strain-specific differences in the mechanisms that L. monocytogenes uses to evade killing by autophagy in host cells.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cães , Proteínas de Choque Térmico/metabolismo , Cinética , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , Proteína Sequestossoma-1 , Proteínas Ubiquitinadas/metabolismo
5.
Autophagy ; 9(7): 985-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23584039

RESUMO

Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3(+) bacteria were present within single-membrane phagosomes that are LAMP1(+). Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3(+) bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.


Assuntos
Interações Hospedeiro-Patógeno , Listeria monocytogenes/metabolismo , Macrófagos/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diglicerídeos/metabolismo , Proteínas de Choque Térmico/metabolismo , Listeria monocytogenes/ultraestrutura , Macrófagos/ultraestrutura , Camundongos , Modelos Biológicos , NADPH Oxidases/metabolismo , Fagocitose , Fagossomos/metabolismo , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1 , Ubiquitinação
7.
Curr Biol ; 22(13): R540-5, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22790007

RESUMO

Autophagy is a conserved cellular degradative pathway that is now established to be a vital part of the host immune response to microbial infection. Autophagy can directly eliminate intracellular pathogens by mediating their delivery to lysosomes. Canonical autophagy is characterized by the formation of a double-membrane autophagosome and the involvement of over 35 autophagy-related proteins (Atgs), including a commonly used autophagosome marker in mammalian cells, LC3. Recent studies have shown that a subset of autophagy components can lead to LC3 conjugation onto phagosomes. This process of LC3-associated phagocytosis (LAP) results in the degradation of the cargo by promoting phagosome fusion with lysosomes. Other components of the autophagy machinery also play roles in immunity that are distinct from the canonical autophagy and LAP pathways. This minireview highlights the complicated relationship between autophagy components and intracellular bacteria, including bacterial targeting mechanisms and the interaction between autophagy and effectors/toxins secreted by bacteria.


Assuntos
Autofagia/fisiologia , Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Animais , Proteína 5 Relacionada à Autofagia , Toxinas Bacterianas/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Fagossomos/metabolismo
8.
Autophagy ; 7(3): 341-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21079414

RESUMO

Autophagy is an innate immune defense against bacterial invasion. Recent studies show that two adaptor proteins, p62 and NDP52, are required for autophagy of the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium). However, it is not known why two different adaptors are required to target the same bacterial cargo to autophagy. Here we show that both adaptors are recruited to bacteria with similar kinetics, that they are recruited to bacteria independently of each other, and that depletion of either adaptor leads to impairment of antibacterial autophagy. Depletion of both adaptors does not synergistically impair autophagy, indicating they act in the same pathway. Remarkably, we observed that these adaptors do not colocalize, but rather form non-overlapping microdomains surrounding bacteria. We conclude that p62 and NDP52 act cooperatively to drive efficient antibacterial autophagy by targeting the protein complexes they coordinate to distinct micro-domains associated with bacteria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Nucleares/metabolismo , Salmonella/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Compartimento Celular , Células HeLa , Humanos , Cinética , Ligação Proteica , Proteína Sequestossoma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...