Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458292

RESUMO

Lung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles. The biosensor employs DNAzyme-mediated dual strand displacement amplification, which enhances the signal output intensity of the EBFC and improves selectivity. The coupling of the capacitor with the EBFC significantly amplifies the sensing signal, causing a 10.6-fold surge in current respond and further improving the sensitivity of the sensing platform. The established detection approach demonstrates a linear relationship varied from 0.0001 to 10,000 pM, with a sensitivity down to 32.3 aM as the minimum detectable limit, which has been effectively utilized for detecting miRNA-21 in practical samples. This sensing system provides strong support for the construction of portable detection devices, and the strategy of the platform construction provides an effective method for ultra-sensitive and accurate detection of miRNA, holding great potential in clinical diagnosis, prognosis evaluation, and drug screening for cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , Humanos , Neoplasias Pulmonares/diagnóstico , Smartphone , Ouro , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Biomarcadores , Limite de Detecção , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...