Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(8): 913-925, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196158

RESUMO

Overexpression of nectin cell adhesion protein 4 correlates with cancer progression and poor prognosis in many human malignancies. Enfortumab vedotin (EV) is the first nectin-4-targeting antibody-drug conjugate (ADC) approved by the FDA for the treatment of urothelial cancer. However, inadequate efficacy has limited progress in the treatment of other solid tumors with EV. Furthermore, ocular, pulmonary, and hematologic toxic side effects are common in nectin-4-targeted therapy, which frequently results in dose reduction and/or treatment termination. Thus, we designed a second generation nectin-4-specific drug, 9MW2821, based on interchain-disulfide drug conjugate technology. This novel drug contained a site specifically conjugated humanized antibody and the cytotoxic moiety monomethyl auristatin E. The homogenous drug-antibody ratio and novel linker chemistry of 9MW2821 increased the stability of conjugate in the systemic circulation, enabling highly efficient drug delivery and avoiding off-target toxicity. In preclinical evaluation, 9MW2821 exhibited nectin-4-specific cell binding, efficient internalization, bystander killing, and equivalent or superior antitumor activity compared with EV in both cell line-derived xenograft and patient-derived xenograft (PDX) models. In addition, 9MW2821 demonstrated a favorable safety profile; the highest nonseverely toxic dose in monkey toxicologic studies was 6 mg/kg, with milder adverse events compared with EV. Overall, 9MW2821 is a nectin-4-directed, investigational ADC based on innovative technology that endowed the drug with compelling preclinical antitumor activity and a favorable therapeutic index. The 9MW2821 ADC is being investigated in a phase I/II clinical trial (NCT05216965 and NCT05773937) in patients with advanced solid tumors.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Nectinas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Moléculas de Adesão Celular , Linhagem Celular Tumoral
2.
Methods Enzymol ; 456: 459-73, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19348904

RESUMO

During the electron transfer through the cytochrome bc(1) complex (ubiquinol-cytochrome c oxidoreductase or complex III), protons are translocated across the membrane, and production of superoxide anion radicals (O(2)(*-)) is observed. The bc(1) complex is purified from broken mitochondrial preparation prepared from frozen heart muscles by repeated detergent solubilization and salt fractionation. The electron transfer of the purified complex is determined spectrophotometrically. The activity depends on the choice of detergent, protein concentration, and ubiquinol derivatives used. The proton translocation activity of 2H(+)/e(-) is determined in the reconstituted bc(1)-PL vesicles. The O(2)(*-) production by bc(1) is determined by measuring the chemiluminescence of the 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazol[1,2-1]pyrazin-3-one hydrochloride (MCLA)-O(2)(*-) adduct during a single turnover of bc(1) complex, with the Applied Photophysics stopped-flow reaction analyzer SX.18MV, by leaving the excitation light source off and registering the light emission. Production of O(2)(*-) by bc(1) is in an inverse relationship to its electron transfer activity. Inactivation of the bc(1) complex by incubating at elevated temperature (37 degrees C) or by treatment with proteinase K results in an increase in O(2)(*-)-generating activity to the same level as that of the antimycin A-inhibited complex. These results suggest that the structural integrity of protein subunits is not required for O(2)(*-)-generating activity in the bc(1) complex.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Superóxidos/metabolismo , Animais , Bovinos , Mitocôndrias Cardíacas/enzimologia , Partículas Submitocôndricas/enzimologia
3.
Biochim Biophys Acta ; 1777(7-8): 1038-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18452702

RESUMO

Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc(1) complex in the past have led to the formulation of the "protonmotive Q-cycle" mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the Q(P) site with both electrons transferred simultaneously to ISP and cyt b(L) when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc(1) demonstrates that the reduced ISP-ED moves to the c(1)-position to reduce cyt c(1) only after the reduced cyt b(L) is oxidized by cyt b(H). However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of Q(P) site inhibitors, Pm and Pf, under various redox states of the bc(1) complex, suggest that the electron transfer from heme b(L) to b(H) is the driving force for the releasing of the reduced ISP-ED from the b-position to c(1)-position to reduce cyt c(1).


Assuntos
Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Animais , Sítios de Ligação , Bovinos , Galinhas , Transporte de Elétrons , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEBS Lett ; 582(4): 523-6, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18230359

RESUMO

The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Animais , Calorimetria , Bovinos , Transporte de Elétrons , Mitocôndrias Cardíacas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...