Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540730

RESUMO

Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Glicosilação , Sumoilação
2.
ACS Omega ; 8(44): 41310-41320, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970049

RESUMO

SIRT6 is an emerging regulator of longevity. Overexpression of SIRT6 extends the lifespan of mice. Conversely, SIRT6 knockout mice demonstrate severe metabolic defects and a shortened lifespan. The discrepancy between SIRT6's weak in vitro activity and robust in vivo activity has led to the hypothesis that this enzyme can be activated in response to DNA damage in cells. Here, we demonstrate that the deacetylase activity of SIRT6 can be stimulated by DNA strand breaks for synthetic peptide and histone substrates. The mechanism of activation is further explored by using an integrative chemical biology approach. SIRT6 can be preferentially activated by DNA lesions harboring a 5'-phosphate. The N- and C-termini of SIRT6 are strictly required for DNA break-induced activation. Additionally, the defatty-acylase activity of SIRT6 is also sensitive to DNA breaks, although the physiological significance needs further investigation. Collectively, our study sheds important light on the cellular regulation of diverse SIRT6 activities and suggests possible strategies for effective SIRT6 activation.

3.
FEBS J ; 290(19): 4762-4776, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37289138

RESUMO

Human sirtuins play important roles in various cellular events including DNA repair, gene silencing, mitochondrial biogenesis, insulin secretion and apoptosis. They regulate a wide array of protein and enzyme targets through their NAD+ -dependent deacetylase activities. Sirtuins are also thought to mediate the beneficial effects of low-calorie intake to extend longevity in diverse organisms from yeast to mammals. Small molecules mimicking calorie restriction to stimulate sirtuin activity are attractive therapeutics against age-related disorders such as cardiovascular diseases, diabetes and neurodegeneration. Little is known about one of the mitochondrial sirtuins, SIRT5. SIRT5 has emerged as a critical player in maintaining cardiac health and neuronal viability upon stress and functions as a tumour suppressor in a context-specific manner. Much has been debated about whether SIRT5 has evolved away from being a deacetylase because of its weak catalytic activity, especially in the in vitro testing. We have, for the first time, identified a SIRT5-selective allosteric activator, nicotinamide riboside (NR). It can increase SIRT5 catalytic efficiency with different synthetic peptide substrates. The mechanism of action was further explored using a combination of molecular biology and biochemical strategies. Based on the existing structural biology information, the NR binding site was also mapped out. These activators are powerful chemical probes for the elucidation of cellular regulations and biological functions of SIRT5. The knowledge gained in this study can be used to guide the design and synthesis of more potent, isotype-selective SIRT5 activators and to develop them into therapeutics for metabolic disorders and age-related diseases.


Assuntos
Sirtuínas , Animais , Humanos , Sirtuínas/genética , Niacinamida/farmacologia , Peptídeos/química , Compostos de Piridínio/farmacologia , Mamíferos/metabolismo
4.
RSC Adv ; 13(17): 11771-11781, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063743

RESUMO

The sirtuin family of NAD+-dependent protein deacylases has gained significant attention during the last two decades, owing to their unique enzymatic activities as well as their critical roles in a broad array of cellular events. Innovative chemical probes are heavily pursued for the functional annotation and pharmacological perturbation of this group of "eraser" enzymes. We have developed several series of activity-based chemical probes (ABPs) to interrogate the functional state of active sirtuins in complex biological samples. They feature a simple Ala-Ala-Lys tripeptide backbone with a thioacyl "warhead", a photoaffinity group (benzophenone or diazirine), and a bioorthogonal group (terminal alkyne or azido) for conjugation to reporters. When applied in a comparative fashion, these probes reveal the changes of active sirtuin contents under different physiological conditions. Additionally, they can also be utilized in a competitive manner for inhibitor discovery. The Nobel-winning "click" conjugation to a fluorophore allows the visualization of the active enzymes, while the covalent adduct to a biotin leads to the affinity capture of the protein of interest. Furthermore, the "clickable" tag enables the easy access to proteolysis targeting chimeras (PROTACs) that effectively degrade human SIRT2 in HEK293 cells, albeit at micromolar concentrations. These small molecule probes offer unprecedented opportunities to investigate the biological functions and physiological relevance of the sirtuin family.

5.
SLAS Discov ; 28(6): 255-269, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36863508

RESUMO

The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.


Assuntos
Química Farmacêutica , Química Computacional , Humanos , Ecossistema , Universidades , Virginia , Descoberta de Drogas/métodos , Relação Quantitativa Estrutura-Atividade , Biologia Molecular
6.
J Am Chem Soc ; 144(51): 23543-23550, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516439

RESUMO

Most oxidative damage on mitochondrial DNA is corrected by the base excision repair (BER) pathway. However, the enzyme that catalyzes the rate-limiting reaction─deoxyribose phosphate (dRP) removal─in the multienzymatic reaction pathway has not been completely determined in mitochondria. Also unclear is how a logical order of enzymatic reactions is ensured. Here, we present structural and enzymatic studies showing that human mitochondrial EXOG (hEXOG) exhibits strong 5'-dRP removal ability. We show that, unlike the canonical dRP lyases that act on a single substrate, hEXOG functions on a variety of abasic sites, including 5'-dRP, its oxidized product deoxyribonolactone (dL), and the stable synthetic analogue tetrahydrofuran (THF). We determined crystal structures of hEXOG complexed with a THF-containing DNA and with a partial gapped DNA to 2.9 and 2.1 Šresolutions, respectively. The structures illustrate that hEXOG uses a controlled 5'-exonuclease activity to cleave the third phosphodiester bond away from the 5'-abasic site. This study provides a structural basis for hEXOG's broad spectrum of substrates. Further, we show that hEXOG can set the order of BER reactions by generating an ideal substrate for the subsequent reaction in BER and inhibit off-pathway reactions.


Assuntos
Reparo do DNA , Mitocôndrias , Humanos , Hidrólise , DNA Mitocondrial , Estresse Oxidativo , Dano ao DNA , Endonucleases
7.
Nutrients ; 14(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36235542

RESUMO

Among all the NAD+ precursors, nicotinamide riboside (NR) has gained the most attention as a potent NAD+-enhancement agent. This recently discovered vitamin, B3, has demonstrated excellent safety and efficacy profiles and is orally bioavailable in humans. Boosting intracellular NAD+ concentrations using NR has been shown to provide protective effects against a broad spectrum of pathological conditions, such as neurodegenerative diseases, diabetes, and hearing loss. In this review, an integrated overview of NR research will be presented. The role NR plays in the NAD+ biosynthetic pathway will be introduced, followed by a discussion on the synthesis of NR using chemical and enzymatic approaches. NR's effects on regulating normal physiology and pathophysiology will also be presented, focusing on the studies published in the last five years.


Assuntos
NAD , Niacinamida , Humanos , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Compostos de Piridínio , Vitaminas
8.
Biomolecules ; 12(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009002

RESUMO

Inhibition of Plasmodium falciparum nicotinamidase could represent a potential antimalarial since parasites require nicotinic acid to successfully recycle nicotinamide to NAD+, and importantly, humans lack this biosynthetic enzyme. Recently, mechanism-based inhibitors of nicotinamidase have been discovered. The most potent compound inhibits both recombinant P. falciparum nicotinamidase and parasites replication in infected human red blood cells (RBCs). These studies provide evidence for the importance of nicotinamide salvage through nicotinamidase as a central master player of NAD+ homeostasis in P. falciparum.


Assuntos
Antimaláricos , Niacina , Antimaláricos/farmacologia , Humanos , NAD , Niacinamida/farmacologia , Nicotinamidase , Plasmodium falciparum
9.
RSC Adv ; 12(4): 2219-2226, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425235

RESUMO

Adenosine and its derivatives are important building blocks of the biological system. They serve as the universal energy currency, amplify intracellular signals for various signal transduction pathways, and can also be used as the co-substrates for enzymatic transformations. The synthesis and regulation of adenosine and its analogs rely on the adenosine binding proteins (ABPs). Dysregulated ABP activity contributes to numerous diseases such as cancer, metabolic disorders, and neurodegenerative diseases. Presently, there is intense interest in targeting ABPs for therapeutic purposes. A large fraction of the human ABP family remains poorly characterized. The need for innovative chemical probes to investigate ABP function in the native biological matrix is apparent. In this study, an adenosine analog, probe 1, with a photoaffinity group and biotin tag was synthesized using concise synthetic strategies. This probe was able to label and capture individual recombinant ABPs with good target selectivity. Probe 1 was also evaluated for its ability to label spiked ABP in complex cell lysates. This chemical probe, together with the labeling and enrichment assay, is of great value to interrogate the biological functions of ABPs and to elucidate their diversity under different physiological conditions.

10.
Curr Med Chem ; 29(10): 1718-1738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34060996

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.


Assuntos
Redes e Vias Metabólicas , NAD , Envelhecimento , Metabolismo Energético , Humanos , Oxirredução
11.
Front Physiol ; 12: 752117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744791

RESUMO

The human sirtuins are a group of NAD+-dependent protein deacylases. They "erase" acyl modifications from lysine residues in various cellular targets including histones, transcription factors, and metabolic enzymes. Through these far-reaching activities, sirtuins regulate a diverse array of biological processes ranging from gene transcription to energy metabolism. Human sirtuins have been intensely pursued by both academia and industry as therapeutic targets for a broad spectrum of diseases such as cancer, neurodegenerative diseases, and metabolic disorders. The last two decades have witnessed a flood of small molecule sirtuin regulators. However, there remain relatively few compounds targeting human sirtuins in clinical development. This reflects the inherent issues concerning the development of isoform-selective and potent molecules with good drug-like properties. In this article, small molecule sirtuin regulators that have advanced into clinical trials will be discussed in details as "successful" examples for future drug development. Special attention is given to the discovery of these compounds, the mechanism of action, pharmacokinetics analysis, formulation, as well as the clinical outcomes observed in the trials.

12.
Bioorg Chem ; 117: 105413, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655842

RESUMO

The mammalian sirtuins are a group of posttranslational modification enzymes that remove acyl modifications from lysine residues in an NAD+-dependent manner. Although initially proposed as histone deacetylases (HDACs), they are now known to target other cellular enzymes and proteins as well. Sirtuin-catalyzed simple amide hydrolysis has profound biological consequences including suppression of gene expression, promotion of DNA damage repair, and regulation of glucose and lipid metabolism. Human sirtuins have been intensively pursued by both academia and industry as potential therapeutic targets for the treatment of diseases such as cancer and neurodegeneration. To gain a better understanding of their roles in various cellular events, innovative chemical probes are highly sought after. This current study focuses on the development of activity-based chemical probes (ABPs) for the profiling of sirtuin activity in biological samples. Cyclooctyne-containing and azido-containing probes were synthesized to enable the subsequent copper-free "click" conjugation to either a fluorophore or biotin. The two groups of structurally related ABPs demonstrated different labeling efficiency and selectivity: the cyclooctyne-containing probes failed to label recombinant sirtuins to any appreciable level, while the azido-containing ABPs showed good isoform selectivity. The azido-containing ABPs were further analyzed for their ability to label an individual sirtuin isoform in protein mixtures and cell lysates. These biocompatible ABPs allow the study of dynamic cellular protein activity change to become possible.


Assuntos
Química Click/métodos , Sirtuínas/metabolismo , Animais , Azidas/análise , Azidas/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Humanos , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Sirtuínas/análise
13.
Biomolecules ; 11(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670751

RESUMO

SIRT1 is the most extensively studied human sirtuin with a broad spectrum of endogenous targets. It has been implicated in the regulation of a myriad of cellular events, such as gene transcription, mitochondria biogenesis, insulin secretion as well as glucose and lipid metabolism. From a mechanistic perspective, nicotinamide (NAM), a byproduct of a sirtuin-catalyzed reaction, reverses a reaction intermediate to regenerate NAD+ through "base exchange", leading to the inhibition of the forward deacetylation. NAM has been suggested as a universal sirtuin negative regulator. Sirtuins have evolved different strategies in response to NAM regulation. Here, we report the detailed kinetic analysis of SIRT1-catalyzed reactions using endogenous substrate-based synthetic peptides. A novel substrate-dependent sensitivity of SIRT1 to NAM inhibition was observed. Additionally, SIRT1 demonstrated pH-dependent deacetylation with normal solvent isotope effects (SIEs), consistent with proton transfer in the rate-limiting step. Base exchange, in contrast, was insensitive to pH changes with no apparent SIEs, indicative of lack of proton transfer in the rate-limiting step. Consequently, NAM inhibition was attenuated at a high pH in proteated buffers. Our study provides new evidence for "activation by de-repression" as an effective sirtuin activation strategy.


Assuntos
Niacinamida/farmacologia , Sirtuína 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Epigenômica , Humanos , Concentração de Íons de Hidrogênio , Sirtuína 1/genética
14.
Org Biomol Chem ; 19(9): 2063, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33630009

RESUMO

Retraction of 'Convenient synthesis of pyrimidine 2'-deoxyribonucleoside monophosphates with important epigenetic marks at the 5-position' by Song Zheng et al., Org. Biomol. Chem., 2020, 18, 5164-5173, DOI: 10.1039/D0OB00884B.

15.
Mol Cancer Ther ; 20(1): 191-202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203729

RESUMO

Epigenetic activation of Wnt/ß-catenin signaling plays a critical role in Wnt-induced tumorigenesis, notably in colorectal cancers. KDM3 and KDM4 histone demethylases have been reported to promote oncogenic Wnt signaling through demethylation of H3K9 on Wnt target gene promoters and are suggested to be potential therapeutic targets. However, potent inhibitors for these regulators are still not available. In addition, which family is most responsible for activation of Wnt target genes and Wnt-induced oncogenesis is not well documented, specifically in colorectal cancer. In this study, we characterized the functional redundancy and differences between KDM3 and KDM4 in regard to regulating Wnt signaling. Our data suggest that KDM3 may play a more essential role than KDM4 in regulating oncogenic Wnt signaling in human colorectal cancer. We also identified that IOX1, a known histone demethylase inhibitor, significantly suppresses Wnt target gene transcription and colorectal cancer tumorigenesis. Mechanistically, IOX1 inhibits the enzymatic activity of KDM3 by binding to the Jumonji C domain and thereby preventing the demethylation of H3K9 on Wnt target gene promoters. Taken together, our data not only identified the critical mechanisms by which IOX1 suppressed Wnt/ß-catenin signaling and colorectal cancer tumorigenesis through inhibition of KDM3, but also suggested that IOX1 may represent an attractive small molecule lead for future drug design and discovery.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Hidroxiquinolinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Proteínas Wnt/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
17.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375102

RESUMO

NAD+ (nicotinamide adenine dinucleotide)-dependent protein deacylases, namely, the sirtuins, are important cell adaptor proteins that alter cell physiology in response to low calorie conditions. They are thought to mediate the beneficial effects of calorie restriction to extend longevity and improve health profiles. Novel chemical probes are highly desired for a better understanding of sirtuin's roles in various biological processes. We developed a group of remarkably simple activity-based chemical probes for the investigation of active sirtuin content in complex native proteomes. These probes harbor a thioacyllysine warhead, a diazirine photoaffinity tag, as well as a terminal alkyne bioorthogonal functional group. Compared to their benzophenone-containing counterparts, these new probes demonstrated improved labeling efficiency and sensitivity, shortened irradiation time, and reduced background signal. They were applied to the labeling of individual recombinant proteins, protein mixtures, and whole cell lysate. These cell permeable small molecule probes also enabled the cellular imaging of sirtuin activity change. Taken together, our study provides new chemical biology tools and future drug discovery strategies for perturbing the activity of different sirtuin isoforms.


Assuntos
Descoberta de Drogas/métodos , Sondas Moleculares/química , Sirtuínas/química , Técnicas de Química Sintética , Diazometano/química , Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoenzimas , Ligantes , Estrutura Molecular , NAD/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Coloração e Rotulagem , Relação Estrutura-Atividade
18.
Sci Rep ; 10(1): 15386, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32968125

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Org Biomol Chem ; 18(27): 5164-5173, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32584362

RESUMO

Methyl groups of thymine and 5-methylcytosine (5mC) bases in DNA undergo endogenous oxidation damage. Additionally, 5mC residues can be enzymatically deaminated or oxidized through either genetic alterations or the newly identified epigenetic reprogramming pathway. Several methods have been developed to measure the formation of modified DNA nucleobases including 32P-postlabeling. However, the postlabeling method is often limited by the absence of authentic chemical standards. The synthesis of monophosphate standards of nucleotide oxidation products is complicated by the presence of additional functional groups on the modified bases that require complex protection and deprotection strategies. Due to the emerging interest in the pyrimidine oxidation products, the corresponding protected 3'-phosphoramidites needed for solid-phase oligonucleotide synthesis have been reported, and several are commercially available. We report here an efficient synthesis of 3'-monophosphates from 3'-phosphoramidites and the subsequent enzymatic conversion of 3'-monophosphates to the corresponding 5'-monophosphates using commercially available enzymes.

20.
Sci Rep ; 10(1): 10325, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587297

RESUMO

The FDA-approved DNA hypomethylating agents (DHAs) like 5-azacytidine (5AC) and decitabine (DAC) demonstrate efficacy in the treatment of hematologic malignancies. Despite previous reports that showed histone acetylation changes upon using these agents, the exact mechanism underpinning these changes is unknown. In this study, we investigated the relative potency of the nucleoside analogs and non-nucleoside analogs DHAs on DNA methylation reversal using DNA pyrosequencing. Additionally, we screened their effect on the enzymatic activity of the histone deacetylase sirtuin family (SIRT1, SIRT2, SIRT3, SIRT5 and SIRT6) using both recombinant enzymes and nuclear lysates from leukemia cells. The nucleoside analogs (DAC, 5AC and zebularine) were the most potent DHAs and increased the enzymatic activity of SIRT6 without showing any significant increase in other sirtuin isoforms. ChIP-Seq analysis of bone marrow cells derived from six acute myeloid leukemia (AML) patients and treated with the nucleoside analog DAC induced genome-wide acetylation changes in H3K9, the physiological substrate for SIRT6. Data pooling from the six patients showed significant acetylation changes in 187 gene loci at different chromosomal regions including promoters, coding exons, introns and distal intergenic regions. Signaling pathway analysis showed that H3K9 acetylation changes are linked to AML-relevant signaling pathways like EGF/EGFR and Wnt/Hedgehog/Notch. To our knowledge, this is the first report to identify the nucleoside analogs DHAs as activators of SIRT6. Our findings provide a rationale against the combination of the nucleoside analogs DHAs with SIRT6 inhibitors or chemotherapeutic agents in AML due to the role of SIRT6 in maintaining genome integrity and DNA repair.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sirtuínas/metabolismo , Acetilação/efeitos dos fármacos , Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Medula Óssea/patologia , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Decitabina/uso terapêutico , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...