Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963748

RESUMO

Pulse wave analysis, a non-invasive and cuffless approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introducing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...