Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341790

RESUMO

Polymers are known to wet nanopores with high surface energy through an atomically thin precursor film followed by slower capillary filling. We present here light interference spectroscopy using a mesoporous membrane-based chip that allows us to observe the dynamics of these phenomena in situ down to the sub-nanometer scale at milli- to microsecond temporal resolution. The device consists of a mesoporous silicon film (average pore size 6 nm) with an integrated photonic crystal, which permits to simultaneously measure the phase shift of thin film interference and the resonance of the photonic crystal upon imbibition. For a styrene dimer, we find a flat fluid front without a precursor film, while the pentamer forms an expanding molecular thin film moving in front of the menisci of the capillary filling. These different behaviors are attributed to a significantly faster pore-surface diffusion compared to the imbibition dynamics for the pentamer and vice versa for the dimer. In addition, both oligomers exhibit anomalously slow imbibition dynamics, which could be explained by apparent viscosities of six and eleven times the bulk value, respectively. However, a more consistent description of the dynamics is achieved by a constriction model that emphasizes the increasing importance of local undulations in the pore radius with the molecular size and includes a sub-nanometer hydrodynamic dead, immobile zone at the pore wall but otherwise uses bulk fluid parameters. Overall, our study illustrates that interferometric, opto-fluidic experiments with mesoporous media allow for a remarkably detailed exploration of the nano-rheology of polymeric liquids.

2.
Phys Rev Lett ; 125(23): 234502, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337190

RESUMO

When a macroscopic droplet spreads, a thin precursor film of liquid moves ahead of the advancing liquid-solid-vapor contact line. Whereas this phenomenon has been explored extensively for planar solid substrates, its presence in nanostructured geometries has barely been studied so far, despite its importance for many natural and technological fluid transport processes. Here we use porous photonic crystals in silicon to resolve by light interferometry capillarity-driven spreading of liquid fronts in pores of few nanometers in radius. Upon spatiotemporal rescaling the fluid profiles collapse on master curves indicating that all imbibition fronts follow a square-root-of-time broadening dynamics. For the simple liquid (glycerol) a sharp front with a widening typical of Lucas-Washburn capillary-rise dynamics in a medium with pore-size distribution occurs. By contrast, for a polymer (PDMS) a precursor film moving ahead of the main menisci entirely alters the nature of the nanoscale transport, in agreement with predictions of computer simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...