Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 228-234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447670

RESUMO

Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.


Assuntos
Bombyx , Proteínas de Insetos , Receptores Acoplados a Proteínas G , Açúcares , Paladar , Animais , Regulação Alostérica , Sítios de Ligação , Bombyx/metabolismo , Bombyx/química , Microscopia Crioeletrônica , Frutose/metabolismo , Frutose/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/ultraestrutura , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Sorbose/química , Sorbose/metabolismo , Especificidade por Substrato , Açúcares/metabolismo , Açúcares/química , Paladar/fisiologia
2.
Sci Rep ; 12(1): 16218, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171423

RESUMO

Single-cell assays have enriched our understanding of hematopoiesis and, more generally, stem and progenitor cell biology. However, these single-end-point approaches provide only a static snapshot of the state of a cell. To observe and measure dynamic changes that may instruct cell fate, we developed an approach for examining hematopoietic progenitor fate specification using long-term (> 7-day) single-cell time-lapse imaging for up to 13 generations with in situ fluorescence staining of primary human hematopoietic progenitors followed by algorithm-assisted lineage tracing. We analyzed progenitor cell dynamics, including the division rate, velocity, viability, and probability of lineage commitment at the single-cell level over time. We applied a Markov probabilistic model to predict progenitor division outcome over each generation in culture. We demonstrated the utility of this methodological pipeline by evaluating the effects of the cytokines thrombopoietin and erythropoietin on the dynamics of self-renewal and lineage specification in primary human bipotent megakaryocytic-erythroid progenitors (MEPs). Our data support the hypothesis that thrombopoietin and erythropoietin support the viability and self-renewal of MEPs, but do not affect fate specification. Thus, single-cell tracking of time-lapse imaged colony-forming unit assays provides a robust method for assessing the dynamics of progenitor self-renewal and lineage commitment.


Assuntos
Eritropoetina , Trombopoetina , Diferenciação Celular , Linhagem da Célula , Eritropoetina/farmacologia , Humanos , Megacariócitos , Trombopoetina/farmacologia
3.
Hum Mutat ; 43(12): 2295-2307, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054288

RESUMO

Functional assays provide important evidence for classifying the disease significance of germline variants in DNA mismatch repair genes. Numerous laboratories, including our own, have developed functional assays to study mismatch repair gene variants. However, previous assays are limited due to the model system employed, the manner of gene expression, or the environment in which function is assessed. Here, we developed a human cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. Using clustered regularly interspaced short palindromic repeats gene editing, we knocked in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact on RNA and protein, including their ability to prevent microsatellite instability and instigate a DNA damage response. A statistical clustering analysis determined the range of functions associated with known pathogenic or benign variants, and linear regression was performed using existing odds in favor of pathogenicity scores for these control variants to calibrate our functional assay results. By converting the functional outputs into a single odds in favor of pathogenicity score, variant classification expert panels can use these results to readily reassess these VUS. Ultimately, this information will guide proper diagnosis and disease management for suspected Lynch syndrome patients.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Reparo de Erro de Pareamento de DNA , Humanos , Reparo de Erro de Pareamento de DNA/genética , Proteína 1 Homóloga a MutL/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Instabilidade de Microssatélites , Mutação em Linhagem Germinativa/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...