Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 331(Pt 1): 121870, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225076

RESUMO

This study investigated the chemical characteristics, spatiotemporal distribution, and source apportionment of marine fine particles (PM2.5) for clustered transport channels/routes of air masses moving toward three remote sites in East Asia. Six transport routes in three channels were clustered based on backward trajectory simulation (BTS) in the order of: West Channel > East Channel > South Channel. Air masses transported toward Dongsha Island (DS) came mainly from the West Channel, while those transported toward Green Island (GR) and Kenting Peninsula (KT) came mostly from the East Channel. High PM2.5 commonly occurred from late fall to early spring during the periods of Asian Northeastern Monsoons (ANMs). Marine PM2.5 was dominated by water-soluble ions (WSIs) which were predominated by secondary inorganic aerosols (SIAs). Although the metallic content of PM2.5 was predominated by crustal elements (Ca, K, Mg, Fe, and Al), enrichment factor clearly showed that trace metals (Ti, Cr, Mn, Ni, Cu, and Zn) came mainly from anthropogenic sources. Organic carbon (OC) was superior to elemental carbon (EC), while OC/EC and SOC/OC ratios in winter and spring were higher than those in other two seasons. Similar trends were observed for levoglucosan and organic acids. The mass ratio of malonic acid and succinic acid (M/S) was commonly higher than unity, showing the influences of biomass burning (BB) and secondary organic aerosols (SOAs) on marine PM2.5. We resolved that the main sources of PM2.5 were sea salts, fugitive dust, boiler combustion, and SIAs. Boiler combustion and fishing boat emissions at the site DS had higher contribution than those at the sites GR and KT. The highest/lowest contribution ratios of cross-boundary transport (CBT) were 84.9/29.6% in winter and summer, respectively.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Ásia Oriental , Estações do Ano , Aerossóis/análise , Carbono/análise , China
2.
Environ Pollut ; 318: 120899, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565910

RESUMO

This study explored the temporospatial distribution, gas-particle partition, and pollution sources of atmospheric speciated mercury (ASM) from the eastern offshore waters of the Taiwan Island (TI) to the northern South China Sea (SCS). Both gaseous and particulate mercury were simultaneously sampled at three remote sites in four seasons. The average concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate bound mercury (PBM) were 2.05 ± 0.45 ng/m3, 19.17 ± 5.39 pg/m3, and 0.11 ± 0.06 ng/m3, respectively. The concentrations of GEM and PBM in the cold seasons were higher than those in the warm seasons, but those of GOM had an opposite trend. In terms of gas-solid partition, ASM was apportioned as 91.3-97.3% of GEM and 2.7-8.7% of GOM and PBM. The average concentrations of GEM, GOM, and PBM at the Green Island (GI) were 2.21 ± 0.47 ng/m3, 22.31 ± 5.35 pg/m3, and 0.12 ± 0.06 ng/m3; those at the Kenting Peninsula (KT) were 2.11 ± 0.43 ng/m3, 20.57 ± 4.38 pg/m3, and 0.11 ± 0.06 ng/m3; and those at the Dongsha Islands (DS) were 1.84 ± 0.40 ng/m3, 15.19 ± 3.58 pg/m3, and 0.08 ± 0.05 ng/m3, respectively. Overall, the spatial distribution of ASM concentrations showed the order as: GI > KT > DS. Air masses blown mainly from the West Pacific Ocean (WPO) and SCS in summer showed the lowest ASM concentrations. Oppositely, high ASM concentrations were commonly observed in spring and winter when polluted air masses were blown by Asian Northeastern Monsoons (ANMs). The transport routes of polluted air masses were originated mainly from North China, Central China, Northeast China, Korea and Japan, and mostly passed through the urban and industrial regions in the northeastern Asian countries.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Taiwan , Mercúrio/análise , Monitoramento Ambiental , China , Estações do Ano , Gases/análise
3.
Sci Total Environ ; 851(Pt 2): 158313, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037889

RESUMO

In this study, the concentrations of marine fine particles (PM2.5) and their chemical fingerprints were inter-compared at two islands located aside from the west and east waters of Taiwan Island and the variability of west and east passages (i.e., Routes A1 and A2) were explored. Marine PM2.5 was simultaneously sampled at the Green and Dongsha Islands and five chemical components (i.e., water-soluble ions, metallic elements, carbonaceous content, anhydrosugars, and organic acids) were further analyzed in PM2.5 to characterize their chemical fingerprints. The highest concentrations of chemical composition and PM2.5 were commonly observed during the Asian Northeastern Monsoons (ANMs) via long-range transport (LRT). Water-soluble ions (WSIs) were dominated by secondary inorganic aerosols (SIAs), and followed by oceanic spray. The major metallic content of PM2.5 was crustal elements, while trace metals originated from anthropogenic sources with an enrichment factor (EF) > 10. In terms of carbonaceous content in PM2.5, organic carbon (OC) was superior to elemental carbon (EC). High levoglucosan concentrations were also observed during the periods of ANMs. Secondary organic aerosols (SOAs) were formed by atmospheric chemical reactions during the LRT procedure. The PM2.5 concentration of Route A1 was 37.51 % higher than that of Route A2, and trace metals (V, Mn, Ni, Pb, Cr, and Cu) increased significantly by 96.16-325.83 %. Positive matrix factorization (PMF) results revealed that the dominant factor of PM2.5 for Route A1 was shipping emissions and vehicular exhausts (41.2 %), while that for Route A2 was oceanic spray (30.2 %). Route A1 was mainly attributed to highly industrialized regions, densely populated urbanized areas, and ship-intensive traffics in East Asia.


Assuntos
Ilhas , Material Particulado , Poluição Química da Água , Aerossóis/análise , Carbono/análise , Íons/análise , Material Particulado/análise , Material Particulado/química , Taiwan , Oligoelementos/análise , Emissões de Veículos/análise , Poluição Química da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...