Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042290

RESUMO

MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.

2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685851

RESUMO

Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/genética , Genômica , Hispânico ou Latino/genética , Etnicidade , MicroRNAs/genética
3.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144693

RESUMO

The plant Miconia albicans (Sw.) Triana has been popularly used in Brazil to treat chronic inflammatory disturbances, such as osteoarthritis. This disease affects 250 million people worldwide, and is associated with intense pain and loss of articular function. There is a lack of information about the phytochemistry and bioactivity of M. albicans. Therefore, this study determined the chemical composition of some extracts and evaluated their cytotoxicity, along with their antioxidant and anti-inflammatory, activities using in vitro models. Aqueous and ethanolic extracts were prepared. Afterwards, a liquid-liquid partition was developed using chloroform, ethyl acetate, and n-butanol. The extracts were characterized by LC-MS, and their biological activities were evaluated on epithelial cells (Vero), tumoral hepatic cells (Hep-G2), and THP-1 macrophages. LC-MS analyses identified several flavonoids in all fractions, such as quercetin, myricetin, and their glycosides. The crude extracts and n-butanol fractions did not present cytotoxicity to the cells. The non-toxic fractions presented significant antioxidant activity when evaluated in terms of DPPH scavenging activity, lipid peroxidation, and ROS inhibition. THP-1 macrophages treated with the n-butanol fraction (250 µg/mL) released fewer pro-inflammatory cytokines, even in the presence of LPS. In the future, it will be necessary to identify the phytochemicals that are responsible for anti-inflammatory effects for the discovery of new drugs. In vivo studies on M. albicans extracts are still required to confirm their possible mechanisms of action.


Assuntos
Melastomataceae , 1-Butanol , Anti-Inflamatórios/química , Antioxidantes/química , Clorofórmio , Citocinas , Flavonoides/farmacologia , Glicosídeos , Humanos , Lipopolissacarídeos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Quercetina/farmacologia , Espécies Reativas de Oxigênio
4.
Carbohydr Polym ; 278: 118917, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973736

RESUMO

Mushroom ß-d-glucans have demonstrated immunomodulatory activity, which is initiated by their recognition by specific receptors on immune system cells surfaces. Studies indicated that ß-d-glucans may present a synergistic effect with chemotherapy drugs. In this study, a linear ß-(1 â†’ 6)-d-glucan (B16), isolated from A. bisporus and previously characterized (Mw: 8.26 × 104 g/mol), was evaluated about its capacity to modulate THP-1 macrophages towards an M1 phenotype and induce an antitumoral activity. This was evidenced by the production of pro-inflammatory markers upon B16 treatment (30; 100 µg/mL). The breast tumor cells (MDA-MB-231) viability was not affected by treatment with B16, however, their viability markedly decreased upon treatment with the drug doxorubicin. The results showed a synergic effect of B16 and doxorubicin, which reduced the viability of MDA-MB-231 cells by 31%. Furthermore, B16 treatment provided a sustainable M1 state environment and contributed to increase the sensitivity of breast cancer cells to the doxorubicin treatment.


Assuntos
Agaricus/química , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fatores Imunológicos/química , Macrófagos/imunologia , Camundongos , Fenótipo , Polissacarídeos/química , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
5.
J Exp Clin Cancer Res ; 40(1): 313, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620206

RESUMO

BACKGROUND: Trastuzumab-based therapies are the therapeutic option for HER2 positive (HER2+) breast cancer. HER2 amplification is the only biomarker validated for trastuzumab-based therapies. However, a proportion of tumors become refractory during treatment course. For this reason, the finding of new biomarkers beyond HER2 overexpression to identify patients who would benefit most from trastuzumab regimens is of outstanding importance. METHODS: Models of trastuzumab-resistant or hypersensitive cells were generated by exposure to trastuzumab. Cell surface, total HER2, and analyses of proteins involved in cell cycle or apoptosis were analyzed by western blotting. Cell proliferation was analyzed by cell counting, cell cycle and apoptosis was evaluated by FACS. Transcriptomic characterization of the cellular models was performed using bioinformatic online tools, and clinico-genomic analyses were performed using the PAMELA clinical trial data. RESULTS: Besides differing in sensitivities to trastuzumab, the different cellular models also showed distinct response to other anti-HER2 drugs (lapatinib, neratinib, pertuzumab and T-DM1) used in the clinic. That differential effect was not due to changes in cell surface, total or activated HER2. Trastuzumab caused important induction of cell death in hypersensitive cells but not in parental or resistant cells. Transcriptomic analyses of these cellular models together with querying of online databases allowed the identification of individual genes and gene signatures that predicted prognosis and trastuzumab response in HER2+ breast cancer patients. CONCLUSION: The identification of trastuzumab response biomarkers may be used to select patients particularly sensitive to facilitate the use of trastuzumab-based therapies and refine follow-up guidelines in patients with HER2+ tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Prognóstico
6.
Infect Genet Evol ; 91: 104832, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812037

RESUMO

MicroRNAs are gene expression regulators, associated with several human pathologies, including the ones caused by virus infections. Although their role in infection diseases is not completely known, they can exert double functions in the infected cell, by mediating the virus infection and/or regulating the immunity-related gene targets through complex networks of virus-host cell interactions. In this systematic review, the Pubmed, EMBASE, Scopus, Lilacs, Scielo, and EBSCO databases were searched for research articles published until October 22nd, 2020 that focused on describing the role, function, and/or association of miRNAs in SARS-CoV-2 human infection and COVID-19. Following the PRISMA 2009 protocol, 29 original research articles were selected. Most of the studies reported miRNA data based on the genome sequencing of SARS-CoV-2 isolates and computational prediction analysis. The latter predicted, by at least one independent study, 1266 host miRNAs to target the viral genome. Thirteen miRNAs were identified by four independent studies to target SARS-CoV-2 specific genes, suggested to act by interfering with their cleavage and/or translation process. The studies selected also reported on viral and host miRNAs that targeted host genes, on the expression levels of miRNAs in biological specimens of COVID-19 patients, and on the impact of viral genome mutations on miRNA function. Also, miRNAs that regulate the expression levels of the ACE2 and TMPRSS2 proteins, which are critical for the virus entrance in the host cells, were reported. In conclusion, despite the limited number of studies identified, based on the search terms and eligibility criteria applied, this systematic review provides evidence on the impact of miRNAs on SARS-CoV-2 infection and COVID-19. Although most of the reported viral/host miRNAs interactions were based on in silico prediction analysis, they demonstrate the relevance of the viral/host miRNA interaction for viral activity and host responses. In addition, the identified studies highlight the potential use of miRNAs as therapeutic targets against COVID-19, and other viral human diseases (This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) database (#CRD42020199290).


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Genoma Viral , MicroRNAs/genética , SARS-CoV-2/genética , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , COVID-19/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , MicroRNAs/classificação , MicroRNAs/imunologia , Mutação , Ligação Proteica , Receptores Virais/genética , Receptores Virais/imunologia , SARS-CoV-2/imunologia , Serina Endopeptidases/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L405-L412, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33651636

RESUMO

MicroRNAs (miRNAs) are critical modulators of endothelial homeostasis, which highlights their involvement in vascular diseases, including those caused by virus infections. Our main objective was to identify miRNAs involved in the endothelial function and determine their expression in post-mortem lung biopsies of COVID-19 patients with severe respiratory injuries and thrombotic events. Based on functional enrichment analysis, miR-26a-5p, miR-29b-3p, and miR-34a-5p were identified as regulators of mRNA targets involved in endothelial and inflammatory signaling pathways, as well as viral diseases. A miRNA/mRNA network, constructed based on protein-protein interactions of the miRNA targets and the inflammatory biomarkers characterized in the patients, revealed a close interconnection of these miRNAs in association to the endothelial activation/dysfunction. Reduced expression levels of selected miRNAs were observed in the lung biopsies of COVID-19 patients (n = 9) compared to the Controls (n = 10) (P < 0.01-0.0001). MiR-26a-5p and miR-29b-3p presented the best power to discriminate these groups (area under the curve (AUC) = 0.8286, and AUC = 0.8125, respectively). The correlation analysis of the miRNAs with inflammatory biomarkers in the COVID-19 patients was significant for miR-26a-5p [IL-6 (r2 = 0.5414), and ICAM-1 (r2 = 0.5624)], and miR-29b-3p [IL-4 (r2 = 0.8332) and IL-8 (r2 = 0.2654)]. Altogether, these findings demonstrate the relevance and the non-random involvement of miR-26a-5p, miR-29b-3p, and miR-34a-5p in endothelial dysfunction and inflammatory response in patients with SARS-CoV-2 infection and the occurrence of severe lung injury and immunothrombosis.

8.
Sci Rep ; 10(1): 16614, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024147

RESUMO

The R337H is a TP53 germline pathogenic variant that has been associated with several types of cancers, including breast cancer. Our main objective was to determine the frequency of the R337H variant in sporadic breast cancer patients from Paraná state, South Brazil, its association with prognosis and its impact in genomic instability. The genotyping of 805 breast cancer tissues revealed a genotypic and allelic frequency of the R337H variant of 2.36% and 1.18%, respectively. In these R337H+ cases a lower mean age at diagnosis was observed when compared to the R337H-cases. Array-CGH analysis showed that R337H+ patients presented a higher number of copy number alterations (CNAs), compared to the R337H-. These CNAs affected genes and miRNAs that regulate critical cancer signaling pathways; a number of these genes were associated with survival after querying the KMplot database. Furthermore, homozygous (R337H+/R337H+) fibroblasts presented increased levels of copy number variants when compared to heterozygous or R337H- cells. In conclusion, the R337H variant may contribute to 2.36% of the breast cancer cases without family cancer history in Paraná. Among other mechanisms, R337H increases the level of genomic instability, as evidenced by a higher number of CNAs in the R337H+ cases compared to the R337H-.


Assuntos
Neoplasias da Mama/genética , Instabilidade Genômica/genética , Mutação em Linhagem Germinativa/genética , Proteína Supressora de Tumor p53/genética , Fatores Etários , Idoso , Brasil , Neoplasias da Mama/mortalidade , Códon/genética , Éxons/genética , Feminino , Dosagem de Genes/genética , Frequência do Gene , Humanos , Pessoa de Meia-Idade , Taxa de Sobrevida
9.
Nanomaterials (Basel) ; 9(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261957

RESUMO

Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). METHODS: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:ß-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied in vitro using human cell lines with different levels of HER2-expression. RESULTS: In comparison with free paclitaxel:ß-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. CONCLUSIONS: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.

10.
Mol Oncol ; 12(7): 1061-1076, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29683256

RESUMO

The neuregulins (NRGs) represent a large family of membrane-anchored growth factors, whose deregulation may contribute to the pathogenesis of several tumors. In fact, targeting of NRG-activated pathways has demonstrated clinical benefit. To improve the efficacy of anti-NRG therapies, it is essential to gain insights into the regions of NRGs that favor their pro-oncogenic properties. Here, we have addressed the protumorigenic impact of different NRG domains. To do this, deletion mutants affecting different NRG domains were expressed in 293 and MCF7 cells. Of the five forms studied, only the wild-type and a mutant lacking the Ig-like domain (NRGΔIg ) were properly sorted to the plasma membrane. Both forms were released as soluble forms to the culture media. However, the mutant NRGΔIg failed to efficiently activate HER2 and HER3 receptors, signaling pathways, and cell proliferation when compared to wild-type NRG. Treatment with trastuzumab, a humanized antibody used in the breast cancer clinic, inhibited the constitutive activation of HER2, HER3, and downstream signaling in MCF7 cells constitutively expressing wild-type NRG. In contrast, this treatment had a marginal effect on MCF7-NRGΔIg cells. This study demonstrates that the Ig-like region of NRGs exerts an important role in their capability to activate ErbB/HER receptors and mitogenic responses. Strategies aimed at targeting NRGs should consider that fact to improve neutralization of the pro-oncogenic properties of NRGs.


Assuntos
Domínios de Imunoglobulina , Neurregulinas/química , Neurregulinas/metabolismo , Receptor ErbB-2/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Humanos , Células MCF-7 , Proteínas Mutantes/metabolismo , Transdução de Sinais , Solubilidade , Relação Estrutura-Atividade , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...