Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630332

RESUMO

Extracellular synthesis of functional cyclodextrins (CDs) as intermediates of starch assimilation is a convenient microbial adaptation to sequester substrates, increase the half-life of the carbon source, carry bioactive compounds, and alleviate chemical toxicity through the formation of CD-guest complexes. Bacteria encoding the four steps of the carbohydrate metabolism pathway via cyclodextrins (CM-CD) actively internalize CDs across the microbial membrane via a putative type I ATP-dependent ABC sugar importer system, MdxEFG-(X/MsmX). While the first step of the CM-CD pathway encompasses extracellular starch-active cyclomaltodextrin glucanotransferases (CGTases) to synthesize linear dextrins and CDs, it is the ABC importer system in the second step that is the critical factor in determining which molecules from the CGTase activity will be internalized by the cell. Here, structure-function relationship studies of the cyclo/maltodextrin-binding protein MdxE of the MdxEFG-MsmX importer system from Thermoanaerobacter mathranii subsp. mathranii A3 are presented. Calorimetric and fluorescence studies of recombinant MdxE using linear dextrins and CDs showed that although MdxE binds linear dextrins and CDs with high affinity, the open-to-closed conformational change is solely observed after α- and ß-CD binding, suggesting that the CM-CD pathway from Thermoanaerobacterales is exclusive for cellular internalization of these molecules. Structural analysis of MdxE coupled with docking simulations showed an overall architecture typically found in sugar-binding proteins (SBPs) that comprised two N- and C-domains linked by three small hinge regions, including the conserved aromatic triad Tyr193/Trp269/Trp378 in the C-domain and Phe87 in the N-domain involved in CD recognition and stabilization. Structural bioinformatic analysis of the entire MdxFG-MsmX importer system provided further insights into the binding, internalization, and delivery mechanisms of CDs. Hence, while the MdxE-CD complex couples to the permease subunits MdxFG to deliver the CD into the transmembrane channel, the dimerization of the cytoplasmatic promiscuous ATPase MsmX triggers active transport into the cytoplasm. This research provides the first results on a novel thermofunctional SBP and its role in the internalization of CDs in extremely thermophilic bacteria.


Assuntos
Proteínas de Transporte , Dextrinas , Proteínas de Transporte/genética , Polissacarídeos , Firmicutes , Bactérias Anaeróbias , Amido
2.
PeerJ ; 11: e15047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974135

RESUMO

Background: Begomoviruses are circular single-stranded DNA plant viruses that cause economic losses worldwide. Weeds have been pointed out as reservoirs for many begomoviruses species, especially from members of the Sida and Malvastrum genera. These weeds have the ability to host multiple begomoviruses species simultaneously, which can lead to the emergence of new viral species that can spread to commercial crops. Additionally, begomoviruses have a natural tendency to recombine, resulting in the emergence of new variants and species. Methods: To explore the begomoviruses biodiversity in weeds from genera Sida and Malvastrum in Colima, México, we collected symptomatic plants from these genera throughout the state. To identify BGVs infecting weeds, we performed circular DNA genomics (circomics) using the Illumina platform. Contig annotation was conducted with the BLASTn tool using the GenBank nucleotide "nr" database. We corroborated by PCR the presence of begomoviruses in weeds samples and isolated and sequenced the complete genome of a probable new species of begomovirus using the Sanger method. The demarcation process for new species determination followed the International Committee on Taxonomy of Viruses criteria. Phylogenetic and recombination analyses were implemented to infer the evolutionary relationship of the new virus. Results: We identified a new begomovirus species from sida and malvastrum plants that has the ability to infect Cucumis sativus L. According to our findings, the novel species Sida chlorotic leaf virus is the result of a recombination event between one member of the group known as the Squash leaf curl virus (SLCV) clade and another from the Abutilon mosaic virus (AbMV) clade. Additionally, we isolated three previously identified begomoviruses species, two of which infected commercial crops: okra (Okra yellow mosaic Mexico virus) and cucumber (Cucumber chlorotic leaf virus). Conclusion: These findings support the idea that weeds act as begomovirus reservoirs and play essential roles in begomovirus biodiversity. Therefore, controlling their populations near commercial crops must be considered in order to avoid the harmful effects of these phytopathogens and thus increase agricultural efficiency, ensuring food and nutritional security.


Assuntos
Begomovirus , Cucumis sativus , Malvaceae , Sida (Planta) , Begomovirus/genética , Cucumis sativus/genética , Filogenia , DNA Viral/genética , Sequência de Bases , Malvaceae/genética
3.
Foods ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765990

RESUMO

Amaranth 11S globulins (Ah11Sn) are an excellent source of essential amino acids; however, there have been no investigations on the characterization of their techno-functional properties at different pH conditions and NaCl concentrations, which are necessary for food formulations. In this work, we report a new two-step purification method for native Ah11Sn with purity levels of ~95%. LC-MS/MS analysis revealed the presence of three different Ah11Sn paralogs named Ah11SB, A11SC, and Ah11SHMW, and their structures were predicted with Alphafold2. We carried out an experimental evaluation of Ah11Sn surface hydrophobicity, solubility, emulsifying properties, and assembly capacity to provide an alternative application of these proteins in food formulations. Ah11Sn showed good surface hydrophobicity, solubility, and emulsifying properties at pH values of 2 and 3. However, the emulsions became unstable at 60 min. The assembly capacity of Ah11Sn evaluated by DLS analysis showed mainly the trimeric assembly (~150-170 kDa). This information is beneficial to exploit and utilize Ah11Sn rationally in food systems.

4.
Food Chem ; 396: 133681, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853375

RESUMO

A microvolumetric method for surface hydrophobicity (H0) determination of proteins using a Nanodrop fluorospectrometer was developed. This method reduces the protein and fluorophore quantities that are necessary for sample preparations and readings by two and three orders of magnitude, respectively, compared to conventional methods. In addition, readings can be obtained in just 2-6 s. Bovine serum albumin (BSA) and 1-anilino 8-naphthalene sulfonic acid (ANS) were used for the first optimization of appropriate fluorophore-protein conditions for H0 determination (20 µM ANS, 0.5-4 µM BSA, pH 5). Based on validation guidelines, the novel method shows linear behavior, good intraday precision, accuracy, and sensitivity. This method was robust against several factors, as determined by a Youden-Steiner test. Additional surface hydrophobicity determinations using several proteins demonstrate suitable method applicability. The present microvolumetric method provides a reliable technique to determine the H0 of proteins for pharmaceutical, biotechnological, and food applications.


Assuntos
Corantes Fluorescentes , Soroalbumina Bovina , Naftalenossulfonato de Anilina , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência
5.
Sci Rep ; 12(1): 730, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031648

RESUMO

Carbohydrate metabolism via cyclodextrins (CM-CD) is an uncommon starch-converting pathway that thoroughly depends on extracellular cyclomaltodextrin glucanotransferases (CGTases) to transform the surrounding starch substrate to α-(1,4)-linked oligosaccharides and cyclodextrins (CDs). The CM-CD pathway has emerged as a convenient microbial adaptation to thrive under extreme temperatures, as CDs are functional amphipathic toroids with higher heat-resistant values than linear dextrins. Nevertheless, although the CM-CD pathway has been described in a few mesophilic bacteria and archaea, it remains obscure in extremely thermophilic prokaryotes (Topt ≥ 70 °C). Here, a new monophyletic group of CGTases with an exceptional three-domain ABC architecture was detected by (meta)genome mining of extremely thermophilic Thermoanaerobacterales living in a wide variety of hot starch-poor environments on Earth. Functional studies of a representative member, CldA, showed a maximum activity in a thermoacidophilic range (pH 4.0 and 80 °C) with remarkable product diversification that yielded a mixture of α:ß:γ-CDs (34:62:4) from soluble starch, as well as G3-G7 linear dextrins and fermentable sugars as the primary products. Together, comparative genomics and predictive functional analysis, combined with data of the functionally characterized key proteins of the gene clusters encoding CGTases, revealed the CM-CD pathway in Thermoanaerobacterales and showed that it is involved in the synthesis, transportation, degradation, and metabolic assimilation of CDs.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ciclodextrinas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/fisiologia , Thermoanaerobacterium/metabolismo , Genoma Bacteriano/genética , Glucosiltransferases/metabolismo , Família Multigênica , Thermoanaerobacterium/genética
6.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751919

RESUMO

Malnutrition is commonly associated with immunological deregulation, increasing the risk of infectious illness and death. The objective of this work was to determine the in vitro effects of heat-killed Lactobacillus casei IMAU60214 on monocyte-derived macrophages (MDMs) from well-nourished healthy children, well-nourished infected children and malnourished infected children, which was evaluated by an oxygen-dependent microbicidal mechanism assay of luminol-increase chemiluminescence and the secretion of tumor necrosis factor (TNF-α), interleukin (IL-1ß), IL-6 and IL-10, as well as phagocytosis using zymosan and as its antibacterial activity against Salmonella typhimurium, Escherichia coli and Staphylococcus aureus. We found that reactive oxygen species (ROS), secretion cytokines (TNFα, IL-1ß, IL-6 and IL-10 levels), phagocytosis and bactericidal capacity increased in all groups after pre-treatment with heat-killed L. casei IMAU60214 at a ratio of 500:1 (bacteria:MDM) over 24 h compared with MDM cells without pre-treatment. The results could indicate that heat-killed L. casei IMAU60214 is a potential candidate for regulating the immune function of macrophages.


Assuntos
Citocinas/imunologia , Transtornos da Nutrição do Lactente/imunologia , Lacticaseibacillus casei/imunologia , Macrófagos/imunologia , Probióticos/farmacologia , Técnicas Bacteriológicas , Atividade Bactericida do Sangue/imunologia , Citocinas/sangue , Feminino , Temperatura Alta , Humanos , Lactente , Transtornos da Nutrição do Lactente/sangue , Transtornos da Nutrição do Lactente/microbiologia , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Macrófagos/microbiologia , Masculino , Fagocitose/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
7.
PeerJ ; 8: e9245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728488

RESUMO

BACKGROUND: Members of the Begomovirus genus are phytopathogens that infect dicotyledonous plants, producing economic losses in tropical and subtropical regions. To date, only seven species of begomoviruses (BGVs) infecting cucumber have been described. Most cucumber infections were reported in South Asia. In the Americas, begomoviral infections affecting cucumber are scarce; just one report of begomovirus has been described in South America. The presence of whitefly and typical symptoms of viral infections observed in a cucumber field in Colima, Mexico, suggested that plants in this field were affected by BGVs. METHODS: To identify the BGVs infecting cucumber, we performed a high-throughput sequencing and compared the assembled contigs against the GenBank nucleic acid sequence database. To confirm the presence of viruses in cucumber samples, we performed a PCR detection using specific oligonucleotides. We cloned and sequenced by Sanger method the complete genome of a potential new begomovirus. Begomovirus species demarcation was performed according to the International Committee on Taxonomy of Viruses. The evolutionary relationship of the new virus was inferred using phylogenetic and recombination analyses. RESULTS: We identified five species of begomovirus infecting plants in a field. None of these have been previously reported infecting cucumber. One of the five species of viruses here reported is a new begomovirus species. Cucumber chlorotic leaf virus, the new species, is a bipartite begomovirus that has distinctive features of viruses belonging to the squash leaf curl virus clade. CONCLUSIONS: The findings here described represent the first report of begomoviral infection affecting cucumber plants in North America. Previous to this report, only seven begomovirus species have been reported in the world, here we found five species infecting cucumber plants in a small sample suggesting that cucumber is vulnerable to BGVs. One of these viruses is a new species of begomovirus which is the first begomovirus originally isolated from the cucumber. The findings of this report could help to develop strategies to fight the begomoviral infections that affect cucumber crops.

8.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650494

RESUMO

This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.


Assuntos
Hidrolases de Éster Carboxílico/genética , Estabilidade Enzimática/genética , Glucosefosfato Desidrogenase/genética , NADP/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Estabilidade Proteica , Alinhamento de Sequência , Temperatura
9.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326520

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Naftalenossulfonato de Anilina/química , Catálise , Dicroísmo Circular , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/isolamento & purificação , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Guanidina , Humanos , Cinética , México , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Software , Temperatura , Tripsina/química
11.
J Med Virol ; 92(6): 688-692, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32167166

RESUMO

The city of Wuhan, Hubei province, China, was the origin of a severe pneumonia outbreak in December 2019, attributed to a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), causing a total of 2761 deaths and 81109 cases (25 February 2020). SARS-CoV-2 belongs to genus Betacoronavirus, subgenus Sarbecovirus. The polyprotein 1ab (pp1ab) remains unstudied thoroughly since it is similar to other sarbecoviruses. In this short communication, we performed phylogenetic-structural sequence analysis of pp1ab protein of SARS-CoV-2. The analysis showed that the viral pp1ab has not changed in most isolates throughout the outbreak time, but interestingly a deletion of 8 aa in the virulence factor nonstructural protein 1 was found in a virus isolated from a Japanese patient that did not display critical symptoms. While comparing pp1ab protein with other betacoronaviruses, we found a 42 amino acid signature that is only present in SARS-CoV-2 (AS-SCoV2). Members from clade 2 of sarbecoviruses have traces of this signature. The AS-SCoV2 located in the acidic-domain of papain-like protein of SARS-CoV-2 and bat-SL-CoV-RatG13 guided us to suggest that the novel 2019 coronavirus probably emerged by genetic drift from bat-SL-CoV-RaTG13. The implication of this amino acid signature in papain-like protein structure arrangement and function is something worth to be explored.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , Betacoronavirus/patogenicidade , COVID-19 , Quirópteros/microbiologia , Biologia Computacional/métodos , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Proteases Semelhantes à Papaína de Coronavírus , Evolução Molecular , Expressão Gênica , Humanos , Papaína/genética , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Poliproteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética
12.
Microorganisms ; 8(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936101

RESUMO

Most Lactobacillus species have beneficial immunological ("immunoprobiotic") effects in the host. However, it is unclear how probiotic bacteria regulate immune responses. The present study investigated the effects of heat-killed Lactobacillus casei IMAU60214 on the activity of human monocyte-derived macrophages (MDMs). Human MDMs were treated with heat-killed L. casei at a ratio (bacteria/MDM) of 50:1, 100:1, 250:1, and 500:1, and then evaluated for the following: NO production, by Griess reaction; phagocytosis of FITC-labeled Staphylococcus aureus particles; cytokine secretion profile (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-12p70, IL-10, and transforming growth factor (TGF)-ß) by ELISA; and costimulatory molecule (CD80 and CD86) surface expression, by flow cytometry. Heat-killed L. casei IMAU60214 enhanced phagocytosis, NO production, cytokine release, and surface expression of CD80 and CD86 in a dose-dependent manner. All products were previously suppressed by pretreatment with a Toll-like receptor 2 (TLR2)-neutralizing antibody. Overall, our findings suggest that this probiotic strain promotes an M1-like pro-inflammatory phenotype through the TLR2 signaling pathway. These effects on macrophage phenotype help explain the probiotic efficacy of Lactobacillus and provide important information for the selection of therapeutic targets and treatments compatible with the immunological characteristics of this probiotic strain.

13.
Appl Microbiol Biotechnol ; 104(2): 741-750, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31807886

RESUMO

Bioinformatic mining of the Streptomyces thermocarboxydus K155 genome predicted the presence of four synthases for the production of geosmin, hopene, albaflavenone, and a type B-type A diterpenoid system like that described for labdane-related diterpenoids (LRD). The lrd cluster was comprised by an operon of four genes (lrdABDC). This cluster seemed to be silent in the wild-type strain, as neither labdane nor terpene-like compounds were detected by UPLC-TOF-MS and GC-MS analyses in both culture supernatants and mycelial extracts. Heterologous expression of the lrdABDC cluster in a defective cyslabdan producer (Streptomyces cyslabdanicus K04-0144Δcld) generated 8,17-epoxy-7-hydroxy labda-12,14-diene and cyslabdan. The same cluster expressed in the strains Streptomyces coelicolor M1152, Streptomyces peucetius var. caesius, and Streptomyces avermitilis SUKA22 produced the general intermediary labda-8(17), 12(E),14-triene [(E)-biformene]. Besides (E)-biformene, S. coelicolor M1152 and S. avermitilis SUKA22 produced two and three different labdane-type diterpenoids, underlying the relevance of the genetic background of the Streptomyces host in product formation.


Assuntos
Diterpenos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Streptomyces/genética , Streptomyces/metabolismo , Expressão Gênica , Família Multigênica , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Microorganisms ; 8(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878282

RESUMO

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium. Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for Km and Vmax using the substrate GAP were 0.47 ± 0.1 mM, and 5331 µmol min-1 mg-1, respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.

15.
J Struct Biol ; 207(1): 29-39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981884

RESUMO

The labdane-related diterpenoids (LRDs) are a large group of natural products with a broad range of biological activities. They are synthesized through two consecutive reactions catalyzed by class II and I diterpene synthases (DTSs). The structural complexity of LRDs mainly depends on the catalytic activity of class I DTSs, which catalyze the formation of bicyclic to pentacyclic LRDs, using as a substrate the catalytic product of class II DTSs. To date, the structural and mechanistic details for the biosynthesis of bicyclic LRDs skeletons catalyzed by class I DTSs remain unclear. This work presents the first X-ray crystal structure of an (E)-biformene synthase, LrdC, from the soil bacterium Streptomyces sp. strain K155. LrdC was identified as a part of an LRD cluster of five genes and was found to be a class I DTS that catalyzes the Mg2+-dependent synthesis of bicyclic LRD (E)-biformene by the dephosphorylation and rearrangement of normal copalyl pyrophosphate (CPP). Structural analysis of LrdC coupled with docking studies suggests that Phe189 prevents cyclization beyond the bicyclic LRD product through a strong stabilization of the allylic carbocation intermediate, while Tyr317 functions as a general base catalyst to deprotonate the CPP substrate. Structural comparisons of LrdC with homology models of bacterial bicyclic LRD-forming enzymes (CldD, RmnD and SclSS), as well as with the crystallographic structure of bacterial tetracyclic LRD ent-kaurene synthase (BjKS), provide further structural insights into the biosynthesis of bacterial LRD natural products.


Assuntos
Bactérias/química , Diterpenos/metabolismo , Streptomyces/enzimologia , Alquil e Aril Transferases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Estrutura Molecular , Organofosfatos/química
16.
Biomolecules ; 10(1)2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892224

RESUMO

Giardia lambia is a flagellated protozoan parasite that lives in the small intestine and is the causal agent of giardiasis. It has been reported that G. lamblia exhibits glucose-6-phosphate dehydrogenase (G6PD), the first enzyme in the pentose phosphate pathway (PPP). Our group work demonstrated that the g6pd and 6pgl genes are present in the open frame that gives rise to the fused G6PD::6PGL protein; where the G6PD region is similar to the 3D structure of G6PD in Homo sapiens. The objective of the present work was to show the presence of the structural NADP+ binding site on the fused G6PD::6PGL protein and evaluate the effect of the NADP+ molecule on protein stability using biochemical and computational analysis. A protective effect was observed on the thermal inactivation, thermal stability, and trypsin digestions assays when the protein was incubated with NADP+. By molecular docking, we determined the possible structural-NADP+ binding site, which is located between the Rossmann fold of G6PD and 6PGL. Finally, molecular dynamic (MD) simulation was used to test the stability of this complex; it was determined that the presence of both NADP+ structural and cofactor increased the stability of the enzyme, which is in agreement with our experimental results.


Assuntos
Giardia lamblia/enzimologia , Glucosefosfato Desidrogenase/química , NADP/química , NADP/metabolismo , Fosfogluconato Desidrogenase/química , Sítios de Ligação , Glucosefosfato Desidrogenase/metabolismo , Humanos , Modelos Moleculares , Fosfogluconato Desidrogenase/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura
17.
Appl Microbiol Biotechnol ; 100(21): 9229-9237, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27604626

RESUMO

Although the specific function of SCO2127 remains elusive, it has been assumed that this hypothetical protein plays an important role in carbon catabolite regulation and therefore in antibiotic biosynthesis in Streptomyces coelicolor. To shed light on the functional relationship of SCO2127 to the biosynthesis of actinorhodin, a detailed analysis of the proteins differentially produced between the strain M145 and the Δsco2127 mutant of S. coelicolor was performed. The delayed morphological differentiation and impaired production of actinorhodin showed by the deletion strain were accompanied by increased abundance of gluconeogenic enzymes, as well as downregulation of both glycolysis and acetyl-CoA carboxylase. Repression of mycothiol biosynthetic enzymes was further observed in the absence of SCO2127, in addition to upregulation of hydroxyectoine biosynthetic enzymes and SCO0204, which controls nitrite formation. The data generated in this study reveal that the response regulator SCO0204 greatly contributes to prevent the formation of actinorhodin in the ∆sco2127 mutant, likely through the activation of some proteins associated with oxidative stress that include the nitrite producer SCO0216.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Antraquinonas/metabolismo
18.
Genome Announc ; 4(2)2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27013046

RESUMO

Actinoplanesis an endophytic actinobacterium isolated from the medicinal plantAmphipterygium adstringens The strain draft genome sequence reveals a gene cluster involved in the biosynthesis of a hybridtrans-acyltransferase (AT) polyketide, an unconventional bioactive metabolite never reported before in the genusActinoplanes.

19.
Appl Biochem Biotechnol ; 179(3): 497-513, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857855

RESUMO

Although fructosyltransferases from Aspergillus aculeatus have received a considerable interest for the prebiotics industry, their amino acid sequences and structural features remain unknown. This study sequenced and characterized a fructosyltransferase from A. aculeatus (AcFT) isolated by heat treatment of Pectinex Ultra SP-L. The AcFT enzyme showed two isoforms, low-glycosylated AcFT1 and high-glycosylated AcFT2 forms, with similar optimum activity at 60 °C. The purified heat-resistant AcFT1 and AcFT2 isoforms produced identical patterns of fructooligosaccharides (FOS; kestose, nystose and fructosylnystose) with a notable transfructosylation capability (~90 % transferase/hydrolase ratio). In contrast, the pI and optimum pH values exhibited discrete differences, attributable to their glycosylation pattern. Partial protein sequencing showed that AcFT enzyme corresponds to Aspac1_37092, a putative 654-residue fructosyltransferase encoded in the genome of A. aculeatus ATCC16872. A homology model of AcFT also revealed the typical fold common to members of the glycoside hydrolase family 32 (GH32), with an N-terminal five-blade ß-propeller domain enclosing catalytic residues D60, D191, and E292, linked to a C-terminal ß-sandwich domain. To our knowledge, this is the first report describing the amino acid sequence and structural features of a heat-resistant FOS-forming enzyme from A. aculeatus, providing insights into its potential applications in the prebiotics industry.


Assuntos
Aspergillus/enzimologia , Hexosiltransferases/química , Oligossacarídeos/biossíntese , Sequência de Aminoácidos , Aspergillus/química , Sequência de Bases , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Cinética , Oligossacarídeos/química , Prebióticos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2396-411, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627648

RESUMO

During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Šfrom the TNC) and Glu451b (∼4.5 Šfrom the TNC). A positive peak of electron density above 3.5σ in an Fo - Fc map for Glu451a O(ℇ2) indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1-8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Elétrons , Oxirredutases/química , Prótons , Thermus thermophilus/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , Relação Dose-Resposta à Radiação , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/efeitos da radiação , Oxigênio/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efeitos da radiação , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...