Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(8): 4734-4777, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579177

RESUMO

This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.


Assuntos
RNA , RNA/química , RNA/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Animais , Conformação de Ácido Nucleico
2.
Curr Res Neurobiol ; 5: 100114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020809

RESUMO

The chromodomain helicase DNA-binding protein 8 (CHD8) is a chromatin remodeler whose mutation is associated, with high penetrance, with autism. Individuals with CHD8 mutations share common symptoms such as autistic behaviour, cognitive impairment, schizophrenia comorbidity, and phenotypic features such as macrocephaly and facial defects. Chd8-deficient mouse models recapitulate most of the phenotypes seen in the brain and other organs of humans. It is known that CHD8 regulates - directly and indirectly - neuronal, autism spectrum disorder (ASDs)-associated genes and long non-coding RNAs (lncRNAs) genes, which, in turn, regulate fundamental aspects of neuronal differentiation and brain development and function. A major characteristic of CHD8 regulation of gene expression is its non-linear and dosage-sensitive nature. CHD8 mutations appear to affect males predominantly, although the reasons for this observed sex bias remain- unknown. We have recently reported that CHD8 directly regulates X chromosome inactivation (XCI) through the transcriptional control of the Xist long non-coding RNA (lncRNA), the master regulator of mammalian XCI. We identified a role for CHD8 in regulating accessibility at the Xist promoter through competitive binding with transcription factors (TFs) at Xist regulatory regions. We speculate here that CHD8 might also regulate accessibility at neuronal/ASD targets through a similar competitive binding mechanism during neurogenesis and brain development. However, whilst such a model can reconcile the phenotypic differences observed in Chd8 knock-down (KD) vs knock-out (KO) mouse models, explaining the observed CHD8 non-linear dosage-dependent activity, it cannot on its own explain the observed disease sex bias.

3.
Biology (Basel) ; 12(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36979066

RESUMO

The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs.

5.
Prog Neurobiol ; 219: 102353, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100191

RESUMO

Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Esquizofrenia , Animais , Feminino , Masculino , Fatores Sexuais , Caracteres Sexuais
6.
Proc Natl Acad Sci U S A ; 119(28): e2118182119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787055

RESUMO

X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Alelos , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Mamíferos/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética
8.
EMBO J ; 40(24): e105862, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34786738

RESUMO

The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.


Assuntos
Células-Tronco Embrionárias Murinas/citologia , RNA Longo não Codificante/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Camundongos , Regiões Promotoras Genéticas , Processos Estocásticos , Regulação para Cima , Inativação do Cromossomo X
9.
Front Cell Dev Biol ; 9: 735527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722514

RESUMO

Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.

10.
Noncoding RNA ; 7(2)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204536

RESUMO

Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.

11.
Commun Biol ; 4(1): 478, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846535

RESUMO

Mutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder. Here we show, using CRISPR/Cas-9 gene editing technology, that a 236bp N-terminal deletion in the mouse Lbr gene, generating a protein missing the N-terminal domains of LBR, presents a superior model of human PHA. Further, we address recent reports of a link between Lbr and defects in X chromosome inactivation (XCI) and show that our mouse mutant displays minor X chromosome inactivation defects that do not lead to any overt phenotypes in vivo. We suggest that our N-terminal deletion model provides a valuable pre-clinical tool to the research community and will aid in further understanding the etiology of PHA and the diverse functions of LBR.


Assuntos
Anomalia de Pelger-Huët/genética , Receptores Citoplasmáticos e Nucleares/genética , Inativação do Cromossomo X/genética , Animais , Camundongos , Camundongos Knockout , Fenótipo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
12.
Commun Biol ; 4(1): 485, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859315

RESUMO

Female mammals achieve dosage compensation by inactivating one of their two X chromosomes during development, a process entirely dependent on Xist, an X-linked long non-coding RNA (lncRNA). At the onset of X chromosome inactivation (XCI), Xist is up-regulated and spreads along the future inactive X chromosome. Contextually, it recruits repressive histone and DNA modifiers that transcriptionally silence the X chromosome. Xist regulation is tightly coupled to differentiation and its expression is under the control of both pluripotency and epigenetic factors. Recent evidence has suggested that chromatin remodelers accumulate at the X Inactivation Center (XIC) and here we demonstrate a new role for Chd8 in Xist regulation in differentiating ES cells, linked to its control and prevention of spurious transcription factor interactions occurring within Xist regulatory regions. Our findings have a broader relevance, in the context of complex, developmentally-regulated gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Feminino , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
J Neurodev Disord ; 12(1): 29, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172406

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MeCP2) gene. While MeCP2 mutations are lethal in most males, females survive birth but show severe neurological defects. Because X-chromosome inactivation (XCI) is a random process, approximately 50% of the cells silence the wild-type (WT) copy of the MeCP2 gene. Thus, reactivating the silent WT copy of MeCP2 could provide therapeutic intervention for RTT. METHODS: Toward this goal, we screened ~ 28,000 small-molecule compounds from several libraries using a MeCP2-luciferase reporter cell line and cortical neurons from a MeCP2-EGFP mouse model. We used gain/increase of luminescence or fluorescence as a readout of MeCP2 reactivation and tested the efficacy of these drugs under different drug regimens, conditions, and cellular contexts. RESULTS: We identified inhibitors of the JAK/STAT pathway as XCI-reactivating agents, both by in vitro and ex vivo assays. In particular, we show that AG-490, a Janus Kinase 2 (JAK2) kinase inhibitor, and Jaki, a pan JAK/STAT inhibitor, are capable of reactivating MeCP2 from the inactive X chromosome, in different cellular contexts. CONCLUSIONS: Our results suggest that inhibition of the JAK/STAT pathway is a new potential pathway to reinstate MeCP2 gene expression as an efficient RTT treatment.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Animais , Cromossomos , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Inativação do Cromossomo X
14.
Open Biol ; 10(9): 200126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898472

RESUMO

The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and long non-coding RNA (lncRNA), such as the X inactive specific transcript Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject of intense debate. While cross-linking, immuno-precipitation and super-resolution microscopy argue against direct interaction of Polycomb with some lncRNAs, there is increasing evidence supporting the ability of both PRC1 and PRC2 to functionally associate with RNA. Recent data indicate that these interactions are in most cases spurious, but nonetheless crucial for a number of cellular activities. In this review, we suggest that while PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it might occur indirectly and, at least in part, through the process of liquid-liquid phase separation. We present recent models of lncRNA-mediated PRC1/2 recruitment to their targets and describe potential RNA-mediated roles in the three-dimensional organization of the nucleus.


Assuntos
Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/genética , Animais , Catálise , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/química , Ligação Proteica , RNA Longo não Codificante/química , Relação Estrutura-Atividade
16.
Mol Cell ; 68(5): 955-969.e10, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220657

RESUMO

The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA.


Assuntos
Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/metabolismo , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , RNA Longo não Codificante/genética , Ribonucleoproteínas/genética , Transcrição Gênica , Transfecção , Ubiquitinação , Cromossomo X/genética
17.
Science ; 356(6342): 1081-1084, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596365

RESUMO

Recruitment of the Polycomb repressive complexes PRC1 and PRC2 by Xist RNA is an important paradigm for chromatin regulation by long noncoding RNAs. Here, we show that the noncanonical Polycomb group RING finger 3/5 (PCGF3/5)-PRC1 complex initiates recruitment of both PRC1 and PRC2 in response to Xist RNA expression. PCGF3/5-PRC1-mediated ubiquitylation of histone H2A signals recruitment of other noncanonical PRC1 complexes and of PRC2, the latter leading to deposition of histone H3 lysine 27 methylation chromosome-wide. Pcgf3/5 gene knockout results in female-specific embryo lethality and abrogates Xist-mediated gene repression, highlighting a key role for Polycomb in Xist-dependent chromosome silencing. Our findings overturn existing models for Polycomb recruitment by Xist RNA and establish precedence for H2AK119u1 in initiating Polycomb domain formation in a physiological context.


Assuntos
Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Inativação do Cromossomo X , Animais , Feminino , Camundongos , Proteínas do Grupo Polycomb/genética , RNA Longo não Codificante/metabolismo
18.
Front Mol Biosci ; 4: 90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302591

RESUMO

Recent experimental evidence indicates that lncRNAs can act as regulatory molecules in the context of development and disease. Xist, the master regulator of X chromosome inactivation, is a classic example of how lncRNAs can exert multi-layered and fine-tuned regulatory functions, by acting as a molecular scaffold for recruitment of distinct protein factors. In this review, we discuss the methodologies employed to define Xist RNA structures and the tight interplay between structural clues and functionality of lncRNAs. This model of modular function dictated by structure, can be also generalized to other lncRNAs, beyond the field of X chromosome inactivation, to explain common features of similarly folded RNAs.

20.
Science ; 354(6311): 468-472, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27492478

RESUMO

The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.


Assuntos
Inativação Gênica , Lâmina Nuclear/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Inativação do Cromossomo X/genética , Cromossomo X/metabolismo , Animais , Linhagem Celular , Feminino , Camundongos , RNA Longo não Codificante/genética , Transcrição Gênica , Ativação Transcricional , Receptor de Lamina B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...